The α6 nicotinic acetylcholine receptor (nAChR) subunit is an attractive drug target for treating nicotine addiction because it is present at limited sites in the brain including the reward pathway. Lynx1 modulates several nAChR subtypes; lynx1-nAChR interaction sites could possibly provide drug targets. We found that dopaminergic cells from the substantia nigra pars compacta (SNc) express lynx1 mRNA transcripts and, as assessed by co-immunoprecipitation, α6 receptors form stable complexes with lynx1 protein, although co-transfection with lynx1 did not affect nicotine-induced currents from cell lines transfected with α6 and β2. To test whether lynx1 is important for the function of α6 nAChRs in vivo, we bred transgenic mice carrying a hypersensitive mutation in the α6 nAChR subunit (α6L9'S) with lynx1 knockout mice, providing a selective probe of the effects of lynx1 on α6* nAChRs. Lynx1 removal reduced the α6 component of nicotine-mediated rubidium efflux and dopamine (DA) release from synaptosomal preparations with no effect on numbers of α6β2 binding sites, indicating that lynx1 is functionally important for α6* nAChR activity. No effects of lynx1 removal were detected on nicotine-induced currents in slices from SNc, suggesting that lynx1 affects presynaptic α6* nAChR function more than somatic function. In the absence of agonist, lynx1 removal did not alter DA release in dorsal striatum as measured by fast scan cyclic voltammetry. Lynx1 removal affected some behaviors, including a novel-environment assay and nicotine-stimulated locomotion. Trends in 24-hour home-cage behavior were also suggestive of an effect of lynx1 removal. Conditioned place preference for nicotine was not affected by lynx1 removal. The results show that some functional and behavioral aspects of α6-nAChRs are modulated by lynx1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716591PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188715PLOS

Publication Analysis

Top Keywords

lynx1 removal
24
lynx1
16
nachr subunit
8
nicotine-induced currents
8
effects lynx1
8
α6* nachr
8
α6
6
removal
6
nachr
5
deletion lynx1
4

Similar Publications

Negative allosteric modulators, such as lynx1 and lynx2, directly interact with nicotinic acetylcholine receptors (nAChRs). The nAChRs are integral to cholinergic signaling in the brain and have been shown to mediate different aspects of cognitive function. Given the interaction between lynx proteins and these receptors, we examined whether these endogenous negative allosteric modulators are involved in cognitive behaviors associated with cholinergic function.

View Article and Find Full Text PDF

Lynx1 prototoxins: critical accessory proteins of neuronal nicotinic acetylcholine receptors.

Curr Opin Pharmacol

February 2021

Lehigh University, Department of Biological Sciences, 111 Research Drive, Bethlehem, PA, United States. Electronic address:

Nicotinic receptors of the cholinergic system are ligand-gated ion channels, responding to the excitatory neurotransmitter, acetylcholine, and the addictive component of tobacco, nicotine. They help to transduce salient information in the environment by activating specific neural circuitry in normal and disease states. While nicotinic receptors are promising neurological and neuropsychiatric disorder targets, they have fallen out of favor after several late-stage clinical failures.

View Article and Find Full Text PDF

Deletion of lynx1 reduces the function of α6* nicotinic receptors.

PLoS One

December 2017

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America.

The α6 nicotinic acetylcholine receptor (nAChR) subunit is an attractive drug target for treating nicotine addiction because it is present at limited sites in the brain including the reward pathway. Lynx1 modulates several nAChR subtypes; lynx1-nAChR interaction sites could possibly provide drug targets. We found that dopaminergic cells from the substantia nigra pars compacta (SNc) express lynx1 mRNA transcripts and, as assessed by co-immunoprecipitation, α6 receptors form stable complexes with lynx1 protein, although co-transfection with lynx1 did not affect nicotine-induced currents from cell lines transfected with α6 and β2.

View Article and Find Full Text PDF

Unmasking Proteolytic Activity for Adult Visual Cortex Plasticity by the Removal of Lynx1.

J Neurosci

September 2015

Departments of Psychiatry, Neuroscience, and Ophthalmology, Mindich Child Health and Development Institute, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029,

Unlabelled: Experience-dependent cortical plasticity declines with age. At the molecular level, experience-dependent proteolytic activity of tissue plasminogen activator (tPA) becomes restricted in the adult brain if mice are raised in standard cages. Understanding the mechanism for the loss of permissive proteolytic activity is therefore a key link for improving function in adult brains.

View Article and Find Full Text PDF

Lynx1, a cholinergic brake, limits plasticity in adult visual cortex.

Science

November 2010

FM Kirby Neurobiology Center, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.

Experience-dependent brain plasticity typically declines after an early critical period during which circuits are established. Loss of plasticity with closure of the critical period limits improvement of function in adulthood, but the mechanisms that change the brain's plasticity remain poorly understood. Here, we identified an increase in expression of Lynx1 protein in mice that prevented plasticity in the primary visual cortex late in life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!