Lipidomics Reveals Dramatic Physiological Kinetic Isotope Effects during the Enzymatic Oxygenation of Polyunsaturated Fatty Acids Ex Vivo.

J Am Chem Soc

Departments of Chemistry & Biochemistry and Pharmacology, University of California San Diego, School of Medicine, La Jolla, California 92093-0601, United States.

Published: January 2018

Arachidonic acid (AA, 20:4) is an omega-6 polyunsaturated fatty acid (PUFA) and the main precursor to the class of lipid mediators known as eicosanoids. The enzymes that catalyze the oxygenation of AA begin by abstracting hydrogen from one of three bis-allylic carbons within 1,4-cis,cis-diene units. Substitution of deuterium for hydrogen has been shown to lead to massive kinetic isotope effects (KIE) for soybean lipoxygenase (sLOX) oxygenation of linoleic acid (LA, 18:2). Yet, experimental determination of the KIE during oxygenation of AA and LA by mammalian enzymes including cyclooxygenase (COX) and lipoxygenase (LOX) has revealed far lower values. All prior studies investigating the KIE of PUFA oxygenation have relied on in vitro systems using purified enzymes and were limited by availability of deuterated substrates. Here we demonstrate the use of macrophages as an ex vivo model system to study the physiological KIE (PKIE) during enzymatic AA oxygenation by living cells using a newly synthesized library of deuterated AA isotopologues. By extending lipidomic UPLC-MS/MS approaches to simultaneously quantify native and deuterated lipid products, we were able to demonstrate that the magnitude of the PKIE measured in macrophages for COX and LOX oxygenation of AA is similar to KIEs determined in previous reports using the AA isotopologue deuterated at carbon 13 (C13). However, for the first time we show that increasing the number of deuterated bis-allylic carbons to include both C10 and C13 leads to a massive increase in the PKIE for COX oxygenation of AA. We provide evidence that hydrogen(s) present at C10 of AA play a critical role in the catalysis of prostaglandin and thromboxane synthesis. Furthermore, we discovered that deuteration of C10 promotes the formation of the resolving lipid mediator lipoxin B4, likely by interfering with AA cyclization and shunting AA to the LOX pathway under physiological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5765537PMC
http://dx.doi.org/10.1021/jacs.7b09493DOI Listing

Publication Analysis

Top Keywords

kinetic isotope
8
isotope effects
8
oxygenation
8
enzymatic oxygenation
8
polyunsaturated fatty
8
bis-allylic carbons
8
deuterated
5
lipidomics reveals
4
reveals dramatic
4
dramatic physiological
4

Similar Publications

Background: Knowledge of the chemical composition of amyloid plaques and tau tangles at the earlier stages of Alzheimer's disease (AD) pathology is sparse. This is due to limited access to human brain during life and at the earlier stages of AD pathophysiology and technical limitations in quantifying amyloid and tau species at a subcellular level. Understanding the chemical composition of plaques and tangles, how rapidly they grow and what factors drive growth is important for developing and refining therapeutics.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Université de Montpellier, Montpellier, France.

Background: Protein metabolism and turnover can be monitored using tracer methods, notably stable isotope labeling kinetics (SILK) based on 13C-leucine incorporation. This approach has been used in Alzheimer's disease, specifically analyzing the turnover in cerebrospinal fluid of biomarkers of interest, including amyloid peptides, leading to major pathophysiological insights (Nature medicine 12:856-861). This was achieved using immunoprecipitation mass spectrometry, which enables to track a small number of targets present in low concentration.

View Article and Find Full Text PDF

Aerosol ammonium (NH) is a critical component of particulate matter that affects air pollution, climate, and human health. Isotope-based source apportionment of NH is essential for ammonia (NH) mitigation but the role of kinetic vs equilibrium controls on nitrogen isotope (δN) fractionation between NH and NH remains unresolved. Based on concurrent measurements of NH and NH in winter Beijing, we observed that the difference of δN between NH and NH on clean days (3.

View Article and Find Full Text PDF

Background: Reduced meal frequency patterns have become popular for weight loss, maintenance, and improving cardiometabolic health. The extended fasting windows with these dietary patterns could lead to greater protein breakdown, which is a concern for middle-age and older adults who may need higher protein intakes to maintain or increase net protein balance.

Objective: The purpose of this study was to quantify muscle and whole-body protein kinetic responses to three different daily protein intakes within a two-meal eating pattern.

View Article and Find Full Text PDF

This study presents a detailed density functional theory (DFT) investigation into the mechanism and energetics of C-H activations catalyzed by bioinspired Fe(IV)O complexes, particularly in the presence of -hydroxy mediators. The findings show that these mediators significantly enhance the reactivity of the iron-oxo complex. The study examines three substrates with varying bond dissociation energies─ethylbenzene, cyclohexane, and cyclohexadiene─alongside the [Fe(IV)O(N4Py)] complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!