We investigated the role of mammalian target of rapamycin/nuclear factor-kappa B (mTOR/NF-κB) signaling pathway in high thoracic epidural anesthesia (HTEA) against myocardial ischemia-reperfusion (I/R) injury in rats. The rat model of myocardial I/R injury was established. Ninety rats were divided into the normal, sham, I/R, eHTEA, the PDTC, and HTEA + PDTC groups. ELISA was applied to detect cardiac function indexes. HE staining was conducted to observe histopathological changes of myocardial tissues, and TTC staining was performed to detect the myocardial infarction size. TUNEL staining was adopted to detect the cell apoptosis rate. The mRNA and protein levels of mTOR, NF-κB, Fasl, Bcl-2 and Bax, and LC3-I, LC3-II, BNIP3, and Atg5 were detected by RT-qPCR and Western blotting, respectively. The findings indicated that compared with the normal and sham groups, the I/R, PDTC, and HTEA groups showed the larger myocardial infarction size and increased cell apoptosis rate, while the results in the HTEA + PDTC group were opposite. Compared with the normal and sham groups, the I/R group showed reduced mRNA and protein levels of Bcl-2, LC3, BNIP3, and Atg5, and elevated mRNA and protein levels of mTOR, p50, p65, Bax, and Fasl, while the HTEA + PDTC group revealed the opposite results, and the PDTC and HTEA group revealed the increased mRNA and protein levels of Bcl-2, LC3, BNIP3, Atg5, mTOR, p50, p65, Bax, and Fasl. These results prove that the inhibition of mTOR/NF-κB signaling pathway potentiates HTEA against myocardial IR injury by autophagy and apoptosis in rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.26320 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biology, Indiana University, Bloomington, IN 47405.
Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces.
View Article and Find Full Text PDFPLoS One
January 2025
Ionis Pharmaceuticals, Inc., Carlsbad, CA, United States of America.
Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.
View Article and Find Full Text PDFNeuromolecular Med
December 2024
Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China.
Alzheimer's disease (AD) is the most common neurodegenerative disorder. The neuropathology of AD appears in the hippocampus. The purpose of this work was to reveal key differentially expressed genes (DEGs) in the hippocampus of AD patients and healthy individuals.
View Article and Find Full Text PDFNeurochem Res
January 2025
College of Pharmacy, Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
To study the neuronal protective effect and its potential mechanism of C16 against gp120-induced cognitive impairment in vitro and in vivo. The NORT method was used to evaluate the short-term memory abilities of rats, the morphological changes in hippocampus were observed by Nissl staining. Cell viability and damage degree were detected by MTT and LDH.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China.
The development of tumor vaccines represents a significant focus within cancer therapeutics research. Nonetheless, the efficiency of antigen presentation in tumor vaccine remains suboptimal. We introduce an innovative mRNA-lipid nanoparticle platform designed to express tumor antigenic epitopes fused with the transmembrane domain and cytoplasmic tail of the neonatal Fc receptor (FcRn).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!