Cells and tissues are exposed to stress from numerous sources. Senescence is a protective mechanism that prevents malignant tissue changes and constitutes a fundamental mechanism of aging. It can be accompanied by a senescence associated secretory phenotype (SASP) that causes chronic inflammation. We present a Boolean network model-based gene regulatory network of the SASP, incorporating published gene interaction data. The simulation results describe current biological knowledge. The model predicts different in-silico knockouts that prevent key SASP-mediators, IL-6 and IL-8, from getting activated upon DNA damage. The NF-κB Essential Modulator (NEMO) was the most promising in-silico knockout candidate and we were able to show its importance in the inhibition of IL-6 and IL-8 following DNA-damage in murine dermal fibroblasts in-vitro. We strengthen the speculated regulator function of the NF-κB signaling pathway in the onset and maintenance of the SASP using in-silico and in-vitro approaches. We were able to mechanistically show, that DNA damage mediated SASP triggering of IL-6 and IL-8 is mainly relayed through NF-κB, giving access to possible therapy targets for SASP-accompanied diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730191 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1005741 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!