Dynamic Modelling of Embeddable Piezoceramic Transducers.

Sensors (Basel)

Smart Materials and Structures Laboratory, Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA.

Published: December 2017

Embedded Lead Zirconate Titanate (PZT) transducers have been widely used in research related to monitoring the health status of concrete structures. This paper presents a dynamic model of an embeddable PZT transducer with a waterproof layer and a protecting layer. The proposed model is verified by finite-element method (FEM). Based on the proposed model, the factors influencing the dynamic property of the embeddable PZT transducers, which include the material and thickness of the protecting layer, the material and thickness of the waterproof layer, and the thickness of the PZT, are analyzed. These analyses are further validated by a series of dynamic stress transfer experiments on embeddable PZT transducers. The results show that the excitation frequency can significantly affect the stress transfer of the PZT transducer in terms of both amplitude and signal phase. The natural frequency in the poling direction for the PZT transducer is affected by the material properties and the thickness of the waterproof and protecting layers. The studies in this paper will provide a scientific basis to design embeddable PZT transducers with special functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751669PMC
http://dx.doi.org/10.3390/s17122801DOI Listing

Publication Analysis

Top Keywords

pzt transducers
16
embeddable pzt
16
pzt transducer
12
pzt
8
waterproof layer
8
protecting layer
8
proposed model
8
material thickness
8
thickness waterproof
8
stress transfer
8

Similar Publications

Ultrahigh piezoelectric performances of (K,Na)NbO based ceramics enabled by structural flexibility and grain orientation.

Nat Commun

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.

(K,Na)NbO-based ceramics are deemed among the most promising lead-free piezoelectric materials, though their overall piezoelectric performance still lags behind the mainstream lead-containing counterparts. Here, we achieve an ultrahigh piezoelectric charge coefficient d ∼ 807 pC·N, along with a high longitudinal electromechanical coupling factor (k ∼ 88%) and Curie temperature (T ∼ 245 °C) in the (K,Na)(NbSb)O-BiNaZrO-BiFeO (KNN-xSb) system through structural flexibility and grain orientation strategies. Phenomenological models, phase field simulations and high-angle annular dark-field scanning transmission electron microscopy reveal that the structural flexibility originates from the high Coulomb force between K/Na ions and Sb ions in the KNN-xSb system, while the grain orientation promotes the displacement of B-site cations leveraging the engineered domain configuration.

View Article and Find Full Text PDF

PET-PZT Dielectric Polarization: Electricity Harvested from Photon Energy.

Micromachines (Basel)

December 2024

Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.

The effect of residual stress or heat on ferroelectrics used to convert photons into electricity was investigated. The data analysis reveals that when the PET-PZT piezoelectric transducer is UV-irradiated with a 405 nm wavelength, it becomes a photon-heat-stress electric energy converter and capacitator. Our objective was to evaluate the PET-PZT photon-heat-stress electric energy conversion performance and the role of the light's wavelength and intensity.

View Article and Find Full Text PDF

Study on a Strategy to Improve the Image Quality and Imaging Depth for Novel Synthetic Aperture Schemes: An Experimental Investigation.

Ultrason Imaging

January 2025

Biomedical Ultrasound Imaging Laboratory, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology, Madras, Chennai, India.

Imaging depth remains a restriction for Synthetic Aperture (SA) approaches, even though SA techniques have been shown to overcome some of the drawbacks of Conventional Focused Beamforming (CFB) technique. This limitation is attributed to lesser energy per transmit in SA techniques compared to that of CFB technique. Therefore, in this paper, a systematic investigation is done to evaluate the improvement in imaging depth and image quality of B-mode ultrasound images in the case of SA technique using PZT transducer by boosting the input voltage to the transducer, while measuring the acoustic exposure parameters recommended in international standards.

View Article and Find Full Text PDF

Corrosion is a major threat in the aeronautic industry, both in terms of safety and cost. Efficient, versatile, and cost affordable solutions for corrosion monitoring are thus needed. Ultrasonic Lamb Waves (LW) appear to be very efficient for corrosion monitoring and can be made cost effective and versatile if emitted and received by a sparse array of piezoelectric elements (PZT).

View Article and Find Full Text PDF

The paper proposes and verifies a small-angle measurement method based on the defect spot mode of the position-sensitive detector (PSD). With the output characteristics of the PSD in the defect spot mode and the size transformation properties of a focused beam, the measurement sensitivity can be significantly improved. Calibration experiments with the piezoelectric transducer (PZT) indicate that compared with the current PSD-based autocollimation method, the proposed method can improve the sensitivity of small-angle measurement by 57 times, and the measurement sensitivity of the proposed method can be further improved by optimizing the system parameters, while the proposed method has the advantages of a simple system and high real-time performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!