To help mitigate large wetland losses in California, The Nature Conservancy launched a dynamic conservation incentive program to create temporary wetland habitats in harvested and fallow rice fields for shorebirds migrating along the Pacific Flyway. Farmers were invited to participate in a reverse auction bidding process and winning bids were selected based on their cost and potential to provide high quality shorebird habitat. This was done in 2014 and 2015, for separate enrollment periods that overlapped with spring and fall migration, both before and after the traditional post-harvest flooding period. To assess the success of the program, we monitored shorebird use of fields that were enrolled (treatments), and others that were subject to typical rice farm management (controls). To put these observations in context, we used satellites to simultaneously monitor the extent of shallow-water habitat across the ~215,000 ha of ricelands in the area. Results showed that providing habitat during migration, when it is typically unavailable in rice fields, yielded the largest average shorebird densities ever reported for agriculture in the region. Treatment fields had significantly greater shorebird density, richness and diversity than control fields in both spring and fall (especially September-early October, and late March-early April), but in fall the difference was greater. Shorebird responses to habitat provisioning, and regional habitat conditions, were variable from year to year, and highly dynamic within a given season. Overall, shorebirds densities were found to be negatively related to the total amount of flooded habitat in the rice landscape. Factors that affected habitat availability included allocation schedules of water deliveries from reservoirs, and rainfall patterns, both of which were influenced by drought. Collectively, these results suggest that appropriately managed agricultural lands have great potential to provide high value habitat for shorebirds during times of habitat deficit, including migration, and that fall may be a particularly impactful time to create additional habitat. Migratory species face great challenges due to the climate change, conversion of historical stopover sites, and other factors, but dynamic conservation programs offer promise that, at least in certain instances, their needs can still be met.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eap.1658DOI Listing

Publication Analysis

Top Keywords

habitat
11
shorebird habitat
8
habitat migration
8
dynamic conservation
8
rice fields
8
potential provide
8
provide high
8
spring fall
8
greater shorebird
8
shorebird
6

Similar Publications

Optical approaches to monitor neural activity are transforming neuroscience, owing to a fast-evolving palette of genetically encoded molecular reporters. However, the field still requires robust and label-free technologies to monitor the multifaceted biomolecular changes accompanying brain development, aging or disease. Here, we have developed vibrational fiber photometry as a low-invasive method for label-free monitoring of the biomolecular content of arbitrarily deep regions of the mouse brain in vivo through spontaneous Raman spectroscopy.

View Article and Find Full Text PDF

Development of a microbiome for phenolic metabolism based on a domestication approach from lab to industrial application.

Commun Biol

December 2024

Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

Despite a lot of efforts devoted to construct efficient microbiomes, there are still major obstacles to moving from the lab to industrial applications due to the inapplicability of existing technologies or limited understanding of microbiome variation regularity. Here we show a domestication strategy to cultivate an effciient and resilient functional microbiome for addressing phenolic wastewater challenges, which involves directional domestication in shaker, laboratory water test in small-scale, gas test in pilot scale, water test in pilot scale, and engineering application in industrial scale. The domestication process includes the transition from water to gas, which provided complex transient environment for screening of a more adaptable and robust microbiome, thereby mitigating the performance disparities encountered when transitioning from laboratory experimentation to industrial engineering applications.

View Article and Find Full Text PDF

Environmental microbial reservoir influences the bacterial communities associated with Hydra oligactis.

Sci Rep

December 2024

MTA-DE "Momentum" Ecology, Evolution & Developmental Biology Research Group, Dept. of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary.

The objective to study the influence of microbiome on host fitness is frequently constrained by spatial and temporal variability of microbial communities. In particular, the environment serves as a dynamic reservoir of microbes that provides potential colonizers for animal microbiomes. In this study, we analyzed the microbiome of Hydra oligactis and corresponding water samples from 15 Hungarian lakes to reveal the contribution of environmental microbiota on host microbiome.

View Article and Find Full Text PDF

Microbiome and radiotherapy represent bidirectionally interacting entities. The human microbiome has emerged as a pivotal modulator of the efficacy and toxicity of radiotherapy; however, a reciprocal effect of radiotherapy on microbiome composition alterations has also been observed. This review explores the relationship between the microbiome and extracranial solid tumors, particularly focusing on the bidirectional impact of radiotherapy on organ-specific microbiome.

View Article and Find Full Text PDF

Microbiome and Mucosal Immunity in the Intestinal Tract.

In Vivo

December 2024

Department of Gynecology and Gynecological Oncology, Research Laboratories, University Hospital Bonn, Bonn, Germany

The human bowel is exposed to numerous biotic and abiotic external noxious agents. Accordingly, the digestive tract is frequently involved in malfunctions within the organism. Together with the commensal intestinal flora, it regulates the immunological balance between inflammatory defense processes and immune tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!