Alkenyl and aryl peroxides are a special class of organic peroxides. Under ambient conditions, they are usually short-lived, rapidly decomposing into radicals by homolytic O-O bond cleavage. They play an important role in the chemistry of the lower atmosphere, where they are formed through ozonolysis of alkenes. In the dark, this pathway is considered the major source of hydroxyl radicals, the "detergent of the atmosphere". In solution, alkenyl and aryl peroxides can be formed by various methods and their decomposition can be harnessed synthetically. For example, reactions involving alkenyl peroxides can be used to introduce ketones through radical additions, and nucleophilic aromatic substitution reactions generating aryl peroxides have been used to synthesize phenols. The radicals can also initiate radical polymerization reactions or chain reactions and mediate oxidative coupling by C-H bond functionalization. Knowledge of their chemistry could be helpful for projects generating or utilizing peroxides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201703775 | DOI Listing |
J Cell Mol Med
January 2025
Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China.
The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Giza 12622 Egypt
A novel molecular design based on a quinazolinone scaffold was developed the attachment of aryl alkanesulfonates to the quinazolinone core through a thioacetohydrazide azomethine linker, leading to a new series of quinazolinone-alkanesulfonates 5a-r. The antimicrobial properties of the newly synthesized quinazolinone derivatives 5a-r were investigated to examine their bactericidal and fungicidal activities against bacterial pathogens like , (Gram-positive), , , (Gram-negative), in addition to (unicellular fungal). The tested compounds demonstrated reasonable bactericidal activities compared to standard drugs.
View Article and Find Full Text PDFHarnessing the unique optical properties of chirality-enriched single-walled carbon nanotubes (SWCNTs) is the key to unlocking the application of SWCNTs in photonics. Recently, it has been discovered that chemical modification of SWCNTs greatly increases their potential in this context. Despite the dynamic progress in this area, the mechanism of the chemical modification of SWCNTs and the impact of the reaction conditions on the properties of the obtained functional nanomaterials remain unclear.
View Article and Find Full Text PDFChem Asian J
December 2024
Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India.
Adv Sci (Weinh)
December 2024
Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China.
The clinical efficacy of immune checkpoint blockade (ICB) therapy is significantly compromised in the metabolically disordered tumor microenvironment (TME), posing a formidable challenge that cannot be ignored in current antitumor strategies. In this study, TME-responsive nanoparticles (HMP1G NPs) loaded with 1-methyltryptophan (1-MT; an indoleamine 2,3-dioxygenase 1 [IDO1] inhibitor,) and S-nitrosoglutathione (GSNO; a nitric oxide donor) is developed to enhance the therapeutic efficacy of 1-MT-mediated ICB. The HMP1G NPs responded to H and glutathione in the TME, releasing Mn, GSNO, and 1-MT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!