Hepatocellular carcinoma (HCC) is the fifth leading cause of death and is generally typified by elevated liver enzyme biomarkers, antioxidants, and chronic inflammation of hepatocytes. Although currently available drugs have shown remarkable alleviation of the cancerous condition, but at the same time they present a more severe challenge of toxic effects due to chemotherapy. Therefore, in order to bring more patient-compliant therapy, we aimed to refurbish the use of a COX inhibitor, oxyphenbutazone (OPB), with low dose of methotrexate (MTX) to treat diethyl nitrosamine (DENA)-induced HCC in Wistar rats and in Hep3B cells. Hep3B cells were subjected to assays like in vitro cytotoxicity, DNA synthesis, and caspase activity. The combination index was also evaluated, succeeding the cytotoxicity assay, to analyze the possible synergism. For in vivo study, Wistar strain male rats were given single intraperitoneal dose of DENA (200 mg/kg) and were supplied with sodium phenobarbital (0.1% in tap water) for promoting tumorigenesis throughout the study. MTX (2.5 and 5.0 mg/kg/week, ip) and OPB (70 mg/kg/week, po in two divided doses) were administered to the treatment groups from 3rd week till the termination of study. Several biochemical parameters including biomarkers of liver function, antioxidant enzymes, and histopathological examination of liver cells were tested. Significant synergism was witnessed in the cytotoxicity assay when Hep3B cells received varied dose combination treatment of MTX (0.25, 0.5, or 1.0 µmol/L) and OPB (2.5, 5.0, or 7.5 µmol/L). MTX (0.5 and 1.0 µmol/L) in combination with OPB (5.0 or 7.5 µmol/L) inhibited the cell proliferation as BrdU incorporation was quite low in DNA synthesis analysis, as well as caspase-9/-3 cascade was activated which led to apoptosis of cancer cells. Co-treatment with MTX and OPB exerted potential anticancer activity in rats than either of the drugs alone. Administration of combination therapy harmonized the DENA-induced elevation of serum biochemical parameters, including but not limited to, α-fetoprotein (AFP), alanine- and aspartate-aminotransferase, alkaline phosphatase, vascular endothelial growth factor (VEGF), and antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and lipid per oxidation (LPO). All these results were optimally substantiated by histopathological examination. As evident COX-2 catalyzes the synthesis of PGE, needed in the activation of Wnt/β-catenin pathway, which in turn is responsible for activating the transcriptional proteins required for higher degree of cell division and thence growth. Therefore, inhibition of COX-2 by our novel combination infers that even low doses of MTX can elucidate noticeable anticancer activity when paired with OPB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-017-3243-2 | DOI Listing |
Anal Cell Pathol (Amst)
January 2025
School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
DEAD-box helicase 21 (DDX21) is a conserved Asp-Glu-Ala-Asp (DEAD) box RNA helicase with multiple functions that is involved in various cellular processes and diseases. However, the role of DDX21 in the recurrence and prognosis of hepatocellular carcinoma (HCC) patients remains unknown. In the current study, we examined the protein expression of DDX21 in HCC tissues through immunohistochemical staining and analyzed the correlation between DDX21 protein expression and clinical outcome via Kaplan-Meier survival analysis.
View Article and Find Full Text PDFMol Cell Probes
January 2025
Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea. Electronic address:
Despite numerous attempts to understand the molecular mechanisms behind the development of liver cancer, it continues to pose a significant worldwide health challenge. Transcriptome sequencing, a powerful tool in molecular biology, has played a pivotal role in uncovering the intricate gene expression profiles underlying hepatocellular carcinoma (HCC). In the present study, we identified a total of 808 differentially expressed genes (DEGs), with 584 exhibiting downregulation, and 224 showing upregulation following apigetrin treatment.
View Article and Find Full Text PDFToxicology
January 2025
Department of Pharmacology, Shantou University Medical College, Shantou 515041, China. Electronic address:
Aflatoxin B1 (AFB1) has been reported to synergize with hepatitis B virus (HBV) to induce development of hepatocellular carcinoma (HCC). Precise daily exposure to AFB1 and its contribution to liver injury have not been quantified and have even been disregarded due to lack of convenient detection, and the strong species specificity of HBV infection has restricted research on their synergistic harm. Hence, our objective was to investigate the molecular mechanisms by which AFB1 exacerbates HBV-related injury.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Cell Biology, Physiology, and Immunology, University of Córdoba, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain.
Background: Hepatocellular carcinoma (HCC) genetic/transcriptomic signatures have been widely described. However, its proteomic characterization is incomplete. We performed non-targeted quantitative proteomics of HCC samples and explored its clinical, functional, and molecular consequences.
View Article and Find Full Text PDFAm J Hematol
January 2025
Keros Therapeutics, Lexington, Massachusetts, USA.
Patients with chronic inflammation are burdened with anemia of inflammation (AI), where inflammatory cytokines inhibit erythropoiesis, impede erythropoietin production, and limit iron availability by inducing the iron regulator hepcidin. High hepcidin hinders iron absorption and recycling, thereby worsening the impaired erythropoiesis by restricting iron availability. AI management is important as anemia impacts quality of life and potentially affects morbidity and mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!