The Dzyaloshinskii-Moriya interaction has been shown to stabilise Nèel domain walls in magnetic thin films, allowing high domain wall velocities driven by spin current effects. The interfacial Dzyaloshinskii-Moriya interaction (IDMI) occurs at the interface between ferromagnetic and heavy metal layers with strong spin-orbit coupling, but details of the interaction remain to be understood and the role of proximity induced magnetism (PIM) in the heavy metal is unknown. Here IDMI and PIM are reported in Pt determined as a function of Au and Ir spacer layers in Pt/Co/Au,Ir/Pt. Both interactions are found to be sensitive to sub-nanometre changes in the spacer thickness, correlating over sub-monolayer spacer thicknesses, but not for thicker spacers where IDMI continues to change even after PIM is lost.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715054 | PMC |
http://dx.doi.org/10.1038/s41598-017-17137-z | DOI Listing |
Nat Nanotechnol
January 2025
Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan, China.
Skyrmions can form regular arrangements, so-called skyrmion crystals (SkXs). A mode with multiple wavevectors q then describes the arrangement. While magnetic SkXs, which can emerge in the presence of Dzyaloshinskii-Moriya interaction, are well established, polar skyrmion lattices are still elusive.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China.
Magnetic antiskyrmions, the anti-quasiparticles of magnetic skyrmions, possess alternating Bloch- and Néel-type spin spirals, rendering them promising for advanced spintronics-based information storage. To date, antiskyrmions are demonstrated in a few bulk materials featuring anisotropic Dzyaloshinskii-Moriya interactions and a limited number of artificial multilayers. Identifying novel film materials capable of hosting isolated antiskyrmions is critical for memory applications in topological spintronics.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Applied Physics, Institute of Natural Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.
SrCu(BO) (Sr-122) has attracted considerable interest as a quasi-two-dimensional S = 1/2 Heisenberg antiferromagnetic spin system with a Shastry-Sutherland lattice (SSL) structure. It features a Cu spin dimer ground state and exhibits intra-dimer Dzyaloshinskii-Moriya interactions, making Sr-122 a fascinating platform for studying quantum magnetic phenomena. In this study, we investigate the β-phase of SrCu(BO) (β-Sr-212), which retains the same spin structure as Sr-122, to explore how the carrier concentration affects the spin gap.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.
We present a study on nanoscale skyrmionic spin textures in [Formula: see text], a rare-earth complex noncollinear ferromagnet. We confirm, using X-ray microscopy, that [Formula: see text] can host lattices of metastable skyrmion bubbles at room temperature in the absence of a magnetic field, after applying a suitable field cooling protocol. The skyrmion bubbles are robust against temperature changes from room temperature to 330 K.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
International Institute for Sustainability with Knotted Chiral Meta Matter, Kagamiyama, Higashihiroshima 739-8511, Hiroshima, Japan.
I revisit the well-known phase transition between the hexagonal skyrmion lattice and the homogeneous state within the phenomenological Dzyaloshinskii theory for chiral magnets, which includes only the exchange, Dzyaloshinskii-Moriya, and Zeeman energy contributions. I show that, in a narrow field range near the saturation field, the hexagonal skyrmion order gradually transforms into a square arrangement of skyrmions. Then, by the second-order phase transition during which the lattice period diverges, the square skyrmion lattice releases a set of repulsive isolated skyrmions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!