FUNDC1: A Novel Protein in Cardiac Health.

Circulation

Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Spain (J.P.M., A.Z.). Institute for Research in Biomedicine (Institute for Research in Biomedicine Barcelona), Barcelona Institute of Science and Technology, Spain (J.P.M., A.Z.). Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (J.P.M., A.Z.).

Published: December 2017

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.117.031417DOI Listing

Publication Analysis

Top Keywords

fundc1 novel
4
novel protein
4
protein cardiac
4
cardiac health
4
fundc1
1
protein
1
cardiac
1
health
1

Similar Publications

This study investigates the role of Fundc1 in cardiac protection under high-altitude hypoxic conditions and elucidates its underlying molecular mechanisms. Using cardiomyocyte-specific knockout ( ) mice, we demonstrated that deficiency exacerbates cardiac dysfunction under simulated high-altitude hypoxia, manifesting as impaired systolic and diastolic function. Mechanistically, we identified that Fundc1 regulates cardiac function through the mitochondrial unfolded protein response (mito-UPR) pathway.

View Article and Find Full Text PDF

Absence of effective prognostic biomarkers and therapeutic targets for reversing chemoresistance of endometrial carcinoma (EC) remains a huge challenge for clinicians. Mitophagy plays a crucial role in carcinogenesis and chemoresistance. FUN14 domain-containing protein 1 (FUNDC1) is a novel mitophagy receptor protein involved in tumorigenesis under hypoxic conditions.

View Article and Find Full Text PDF

Endothelial FUNDC1 Deficiency Drives Pulmonary Hypertension.

Circ Res

December 2024

State Key Laboratory of Medicinal Chemistry Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, China. (Y.P., D.R., Y.Y., J.S., Q.A., W.H., X. Luo, C.B., L. Zhu, Q.W., S.L., Y. Zhang, J.L., L.L., H.Z., Y.L., G.C., Q.C., X. Liao).

Background: Pulmonary hypertension (PH) is associated with endothelial dysfunction. However, the cause of endothelial dysfunction and its impact on PH remain incompletely understood. We aimed to investigate whether the hypoxia-inducible FUNDC1 (FUN14 domain-containing 1)-dependent mitophagy pathway underlies PH pathogenesis and progression.

View Article and Find Full Text PDF

Adiponectin receptor 1 ( ) deficiency has been shown to inhibit Th17 cell differentiation and reduce joint inflammation and bone erosion in antigen-induced arthritis (AIA) mice. Additional emerging evidence indicates that Th17 cells may differentiate into pathogenic (pTh17) and non-pathogenic (npTh17) cells, with the pTh17 cells playing a crucial role in numerous autoimmune and inflammatory conditions. In the current study, we found that deficiency inhibited pTh17 differentiation and that the deletion of in pTh17 cells reduced the mitochondrial function.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC), a major subtype of lung cancer, encompasses squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. Compared to small cell lung cancer, NSCLC cells grow and divide more slowly, and their metastasis occurs at a later stage. Currently, chemotherapy is the primary treatment for this disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!