Background And Purpose: To evaluate the benefit of independent component analysis (ICA)-based models for predicting rectal bleeding (RB) following prostate cancer radiotherapy.

Materials And Methods: A total of 593 irradiated prostate cancer patients were prospectively analyzed for Grade ≥2 RB. ICA was used to extract two informative subspaces (presenting RB or not) from the rectal DVHs, enabling a set of new pICA parameters to be estimated. These DVH-based parameters, along with others from the principal component analysis (PCA) and functional PCA, were compared to "standard" features (patient/treatment characteristics and DVH bins) using the Cox proportional hazards model for RB prediction. The whole cohort was divided into: (i) training (N = 339) for ICA-based subspace identification and Cox regression model identification and (ii) validation (N = 254) for RB prediction capability evaluation using the C-index and the area under the receiving operating curve (AUC), by comparing predicted and observed toxicity probabilities.

Results: In the training cohort, multivariate Cox analysis retained pICA and PC as significant parameters of RB with 0.65 C-index. For the validation cohort, the C-index increased from 0.64 when pICA was not included in the Cox model to 0.78 when including pICA parameters. When pICA was not included, the AUC for 3-, 5-, and 8-year RB prediction were 0.68, 0.66, and 0.64, respectively. When included, the AUC increased to 0.83, 0.80, and 0.78, respectively.

Conclusion: Among the many various extracted or calculated features, ICA parameters improved RB prediction following prostate cancer radiotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.radonc.2017.11.011DOI Listing

Publication Analysis

Top Keywords

prostate cancer
16
component analysis
12
pica parameters
12
independent component
8
rectal bleeding
8
prediction prostate
8
cancer radiotherapy
8
pica included
8
included auc
8
prediction
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!