The popularity of novel nanoparticles coated capillary column has aroused widespread attention of researchers. Metal organic frameworks (MOFs) with special structure and chemical properties have received great interest in separation sciences. This work presents the investigation of HKUST-1 (Hong Kong University of Science and Technology-1, called Cu(BTC) or MOF-199) nanoparticles as a new type of coating material for capillary electrochromatography. For the first time, three layers coating (3-LC), five layers coating (5-LC), ten layers coating (10-LC), fifteen layers coating (15-LC), twenty layers coating(20-LC) and twenty-five layers coating (25-LC) capillary columns coated with HKUST-1 nanoparticles were synthesized by covalent bond with in situ, layer-by-layer self-assembly approach. The results of scanning electron microscopy (SEM), X-ray diffraction (XRD) and plasma atomic emission spectrometry (ICP-AES) indicated that HKUST-1 was successfully grafted on the inner wall of the capillary. The separating performances of 3-LC, 5-LC, 10-LC, 15-LC, 20-LC and 25-LC open tubular (OT) capillary columns were studied with some neutral small organic molecules. The results indicated that the neutral small organic molecules were separated successfully with 10-LC, 15-LC and 20-LC OT capillary columns because of the size selectivity of lattice aperture and hydrophobicity of organic ligands. In addition, 10-LC and 15-LC OT capillary columns showed better performance for the separation of certain phenolic compounds. Furthermore, 10-LC, 15-LC and 20-LC OT capillary columns exhibited good intra-day repeatability with the relative standard deviations (RSDs; %) of migration time and peak areas lying in the range of 0.3-1.2% and 0.5-4.2%, respectively. For inter-day reproducibility, the RSDs of the three OT capillary columns were found to be lying in the range of 0.3-5.5% and 0.3-4.5% for migration time and peak area, respectively. The RSDs of retention times for column-to-column for three batches of 10-LC, 15-LC and 20-LC OT capillary columns were in the range from 2.3% to 7.2%. Moreover, the fabricated 10-LC, 15-LC and 20-LC OT capillary columns exhibited good repeatability and stability for separation, which could be used successively for more than 120 runs with no observable changes on the separation efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2017.11.064 | DOI Listing |
Rapid Commun Mass Spectrom
April 2025
Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, and Cancer Center, School of Medicine, Tongji University, Shanghai, China.
Rationale: The performance of the capillary column directly impacts the separation efficiency of complex sample in liquid chromatography-mass spectrometry-based proteomics studies. The hydraulic packing system offers an effective solution by reducing packing time and expediting the preparation process of column preparation. However, its operational complexity and strict parameter regulation requirements hinder efficient application.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji City 133002, Jilin Province, China.
Generally, the traditional stationary phase for liquid chromatography is the key part, but with an in situ immutable property, leading to many separation limitations. Based on the former exploration of photosensitive gas chromatography, we successfully prepared a photosensitive monolithic capillary silica column with high light transmission, taking advantage of the reversible cis-trans isomerism of azobenzene. And the cis-trans isomerism has launched an effective, reversible, and precise control on the liquid chromatographic retention behavior just by photoinduction according to the theoretical basis of a good correlation between photoinduction time, -azobenzene ratio, and chromatographic retention factor () ( > 0.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2024
School of Pharmacy, Jiangsu University, Zhenjiang 212013, China. Electronic address:
In order to enrich the selection of biological ligands, realize the miniaturization analysis, and broaden the application of monolith materials for active ingredients screening and separating, we sough to construct a lipid raft @capillary monolith microcolumn affinity chromatography model. Single factor experiments and various characterization methods, including scanning electron microscopy (SEM) and thermogravimetric analysis, were employed to investigate the polymerization of the monolith column under different material ratios to determine optimal preparation conditions. Subsequently, the lipid raft from U251 cells was integrated with the monolith materials based on epoxy-based covalent crosslinking principle and characterized through SEM and immunofluorescence methods.
View Article and Find Full Text PDFObjective: Study of 2.6-di(propan-2-yl)phenol (2.6-di(P-2-yl)F) distribution nature in warm-blooded in case of fatal poisoning due to intragastric administration of the substance.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2024
Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, College Park, Rockville, Maryland 20850, United States.
Sample carryover is a common problem in hydrogen-deuterium exchange mass spectrometry, particularly because immobilized protease columns cannot withstand the high organic solvent concentrations typically used in liquid chromatography-mass spectrometry (LC-MS) for cleaning. Conventional cleaning methods using injections of guanidine HCl still suffer from carryover and may require four blanks after each sample run to fully remove carryover. We have implemented an additional LC pump to deliver customized wash solutions to protease and enzyme columns, and the associated LC capillaries to eliminate carryover.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!