Prenatal urinary polycyclic aromatic hydrocarbon metabolites, global DNA methylation in cord blood, and birth outcomes: A cohort study in China.

Environ Pollut

Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China. Electronic address:

Published: March 2018

Background: Prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) is a potential risk factor for adverse birth outcomes. Epigenetic mechanisms may play a key role in which PAHs exert its effects.

Objective: Our study aimed to examine whether prenatal PAH exposure was associated with adverse birth outcomes and altered DNA methylation and to explore potential mediating roles of DNA methylation.

Methods: Ten urinary PAH metabolites were measured from 106 pregnant women during late pregnancy in a Chinese cohort study. Cord blood DNA methylation in long interspersed nucleotide element-1 (LINE-1) and Alu repetitive elements as surrogates of global DNA methylation was analyzed by bisulfite pyrosequencing. Multivariable linear regression was used to estimate the associations of urinary PAH metabolites with birth outcomes and DNA methylation, and a mediation analysis was also conducted.

Results: Prenatal urinary 2-hydroxynaphthalene (2-OHNa), ∑OHNa (sum of 1- and 2-OHNa), and sum of monohydroxy-PAH (∑OH-PAHs) were associated with lower birth length (e.g., -0.80%, 95% CI: -1.39%, -0.20% for the third vs. first tertile of 2-OHNa; p for trend = 0.01). Prenatal urinary 2-OHNa and 1-hydroxyphenanthrene (1-OHPh) were associated with lower Alu and LINE-1 methylation (e.g., -1.88%, 95% CI: -3.73%, -0.10% for the third vs. first tertile tertile of 2-OHNa in Alu methylation; p for trend = 0.04). Mediation analysis failed to show a mediator effect of global DNA methylation in the association between prenatal urinary OH-PAHs and birth outcomes.

Conclusions: Prenatal specific PAH exposures are associated with decreased birth length and global DNA methylation. However, global DNA methylation does not mediate the associations of prenatal PAH exposure with birth outcomes. Further studies are needed to confirm the results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2017.11.082DOI Listing

Publication Analysis

Top Keywords

dna methylation
32
global dna
20
birth outcomes
20
prenatal urinary
16
methylation
10
dna
9
prenatal
8
polycyclic aromatic
8
cord blood
8
birth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!