Bread wheat is strongly autogamous; however, an opportunity for outcrossing occurs when self-pollination fails and florets open. The first phase of floret opening at anthesis is short and induced by lodicule turgidity. Some wheat florets re-open post-anthesis for several days, known as the 'second opening', for which the underlying mechanisms are largely unknown. We performed detailed physiological, anatomical, and histological investigations to understand the biological basis of the flower opening process. Wheat florets were observed open when the ovary was unfertilized. Unfertilized ovaries significantly increased in radial size post-anthesis, pushing the lemma and palea apart to open the florets. The absence of fertile pollen was not directly linked to this, but anther filament elongation coincided with initiation of ovary swelling. The pericarp of unfertilized ovaries did not undergo degeneration as normally seen in developing grains, instead pericarp cells remained intact and enlarged, leading to increased ovary radial size. This is a novel role for the ovary pericarp in wheat flower opening, and the knowledge is useful for facilitating cross-pollination in hybrid breeding. Ovary swelling may represent a survival mechanism in autogamous cereals such as wheat and barley, ensuring seed set in the absence of self-fertilization and increasing genetic diversity through cross-pollination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853862PMC
http://dx.doi.org/10.1093/jxb/erx410DOI Listing

Publication Analysis

Top Keywords

wheat flower
8
wheat florets
8
flower opening
8
unfertilized ovaries
8
radial size
8
ovary swelling
8
wheat
6
ovary
5
unfertilized
4
unfertilized ovary
4

Similar Publications

Effect of Flowering Shading on Grain Yield and Quality of Durum Wheat in a Mediterranean Environment.

Plants (Basel)

December 2024

Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Balzarini, 1, 64100 Teramo, Italy.

The phenomenon known as "dimming" or shading, caused by the increase in aerosols, air pollutants, and population density, is reducing global radiation, including both direct solar radiation and radiation scattered by the atmosphere. This phenomenon poses a significant challenge for agricultural production in many regions worldwide, with a global radiation decrease estimated between 1.4% and 2.

View Article and Find Full Text PDF

Transcriptomic Analysis of Wheat Under Multi LED Light Conditions.

Plants (Basel)

December 2024

Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China.

Light is a vital environmental cue that profoundly influences the development of plants. LED lighting offers significant advantages in controlled growth environments over fluorescent lighting. Under monochromatic blue LED light, wheat plants exhibited reduced stature, accelerated spike development, and a shortened flowering period with increased blue light intensity promoting an earlier heading date.

View Article and Find Full Text PDF

Maize ( L.) is a globally important crop, thriving across diverse environments. Breeding maize inbreds with good combining ability for stable yields under both optimal and stress-prone conditions has been successful.

View Article and Find Full Text PDF

The role of Ancestral MicroRNAs in grass inflorescence development.

J Plant Physiol

December 2024

Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.

Plant inflorescences are complex, highly diverse structures whose morphology is determined in meristems that form during reproductive development. Inflorescence structure influences flower formation, and consequently grain number, and yield in crops. Correct inflorescence and flower development require tight control of gene expression via complex interplay between regulatory networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!