A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A New Electron Acceptor with -Alkoxyphenyl Side Chain for Fullerene-Free Polymer Solar Cells with 9.3% Efficiency. | LitMetric

A new small molecule acceptor, m-ITIC-OR, based on indacenodithieno[3,2-]thiophene core with -alkoxyphenyl side chains, is designed and synthesized. The m-ITIC-OR film shows broader and redshift absorption compared to its solution and matched energy levels with a hexafluoroquinoxaline-based polymer donor-HFQx-T. Here, polymer solar cells (PSCs) by blending an HFQx-T donor and an m-ITIC-OR acceptor as an active layer deliver the power conversion efficiency (PCE) of 6.36% without any posttreatment. The investigations demonstrate that the HFQx-T:m-ITIC-OR blend films possess higher and more balanced charge mobility, negligible bimolecular recombination, and nanoscale interpenetrating morphology after thermal annealing (TA) treatment. Through a simple TA treatment at 150 °C for 5 min, an impressive PCE of 9.3% is obtained. This efficiency is among one of the highest PCEs for additive free PSCs. This is the first time alkoxyphenyl side chain is introduced into nonfullerene electron acceptor; more interestingly, the new electron acceptor (m-ITIC-OR) in this work shows a great potential for highly efficient photovoltaic properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700628PMC
http://dx.doi.org/10.1002/advs.201700152DOI Listing

Publication Analysis

Top Keywords

electron acceptor
12
-alkoxyphenyl side
8
side chain
8
polymer solar
8
solar cells
8
93% efficiency
8
acceptor m-itic-or
8
acceptor -alkoxyphenyl
4
chain fullerene-free
4
fullerene-free polymer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!