A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A rabbit model of implant-related osteomyelitis inoculated with biofilm after open femoral fracture. | LitMetric

A rabbit model of implant-related osteomyelitis inoculated with biofilm after open femoral fracture.

Exp Ther Med

Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.

Published: November 2017

Currently, animal models used in research on implant-associated osteomyelitis primarily use intramedullary fixation and initial inoculum of planktonic bacterial cells. However, these techniques have certain limitations, including lack of rotational stability and instable inoculation. To improve these models, the present study aimed to establish a novel rabbit model of implant-associated osteomyelitis using biofilm as the initial inoculum following plate fixation of the femoral fracture. A total of 24 New Zealand White rabbits were randomly divided into two equal groups. Osteotomy was performed at the right femoral shaft using a wire saw following fixation with a 5-hole stainless steel plate. The plates were not colonized with bacteria in group 1, but colonized with a biofilm of (American Type Culture Collection, 25923) in group 2. All the rabbits were sacrificed after 21 days for clinical, X-ray, micro-computed tomography and histological assessments of the severity of osteomyelitis. Scanning electron microscopy and confocal laser scanning microscopy were used for biofilm assessment. In group 2, pus formation, periosteal reaction, cortical destruction and absorption were observed in all the rabbits and biofilm formation was observed on all the plates. However, no pus formation was observed except for a slight inflammatory response and all the plates appeared clean without infection in group 1. The differences between the two groups were statistically significant regarding histologic scores and semi-quantification of the bacteria on the plates (P<0.001). In the present study, a novel rabbit model of infection following internal plate fixation of open fracture was successfully established, providing a novel tool for the study of implant-associated osteomyelitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5704256PMC
http://dx.doi.org/10.3892/etm.2017.5138DOI Listing

Publication Analysis

Top Keywords

rabbit model
8
femoral fracture
8
implant-associated osteomyelitis
8
initial inoculum
8
pus formation
8
formation observed
8
biofilm
5
model implant-related
4
osteomyelitis
4
implant-related osteomyelitis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!