Multi-particle cumulants and corresponding Fourier harmonics are measured for azimuthal angle distributions of charged particles in [Formula: see text] collisions at [Formula: see text] = 5.02 and 13 TeV and in [Formula: see text] + Pb collisions at [Formula: see text] = 5.02 TeV, and compared to the results obtained for low-multiplicity [Formula: see text] collisions at [Formula: see text] = 2.76 TeV. These measurements aim to assess the collective nature of particle production. The measurements of multi-particle cumulants confirm the evidence for collective phenomena in [Formula: see text] + Pb and low-multiplicity [Formula: see text] collisions. On the other hand, the [Formula: see text] results for four-particle cumulants do not demonstrate collective behaviour, indicating that they may be biased by contributions from non-flow correlations. A comparison of multi-particle cumulants and derived Fourier harmonics across different collision systems is presented as a function of the charged-particle multiplicity. For a given multiplicity, the measured Fourier harmonics are largest in [Formula: see text], smaller in [Formula: see text] + Pb and smallest in [Formula: see text] collisions. The [Formula: see text] results show no dependence on the collision energy, nor on the multiplicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695894PMC
http://dx.doi.org/10.1140/epjc/s10052-017-4988-1DOI Listing

Publication Analysis

Top Keywords

[formula text]
40
text] collisions
16
collisions [formula
16
[formula
13
multi-particle cumulants
12
fourier harmonics
12
[formula text] + pb
12
text]
10
low-multiplicity [formula
8
collisions
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!