Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
NR1I2 (PXR) and NR1I3 (CAR) are nuclear receptors that are classified as xenoreceptors. Upon activation by various xenobiotics, including marketed drugs, they regulate the transcription level of major drug-metabolizing enzymes and transporters and facilitate the elimination of xenobiotics from the body. The modulation of the activity of these two xenoreceptors by various ligands is a major source of pharmacokinetic variability of environmental origin. NR1I2 and NR1I3 genetic polymorphisms can affect the pharmacokinetics and therapeutic response to many drugs, such as irinotecan, tacrolimus and atazanavir. This review provides an overview of NR1I2 and NR1I3 pharmacogenetic studies in various therapeutic fields (oncology, immunomodulation and infectiology) and discusses the implementation of NR1I2 and NR1I3 genetic polymorphism testing in the clinical routine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/pgs-2017-0121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!