Plant phytochromes are thought to transduce light signals by mediating the degradation of phytochrome-interacting transcription factors (PIFs) through the N-terminal photosensory module, while the C-terminal module, including a histidine kinase-related domain (HKRD), does not participate in signaling. Here we show that the C-terminal module of Arabidopsis phytochrome B (PHYB) is sufficient to mediate the degradation of PIF3 specifically and to activate photosynthetic genes in the dark. The HKRD is a dimerization domain for PHYB homo and heterodimerization. A D1040V mutation, which disrupts the dimerization of HKRD and the interaction between C-terminal module and PIF3, abrogates PHYB nuclear accumulation, photobody biogenesis, and PIF3 degradation. By contrast, disrupting the interaction between PIF3 and PHYB's N-terminal module has little effect on PIF3 degradation. Together, this study demonstrates that the dimeric form of the C-terminal module plays important signaling roles by targeting PHYB to subnuclear photobodies and interacting with PIF3 to trigger its degradation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712524 | PMC |
http://dx.doi.org/10.1038/s41467-017-02062-6 | DOI Listing |
ACS Catal
December 2024
Department of Crystallography and Structural Biology, Consejo Superior de Investigaciones Científicas, Instituto de Química-Física "Blas Cabrera", Madrid 28006, Spain.
Remodeling of the pneumococcal cell wall, carried out by peptidoglycan (PG) hydrolases, is imperative for maintaining bacterial cell shape and ensuring survival, particularly during cell division or stress response. The protein Spr1875 plays a role in stress response, both regulated by the VicRK two-component system (analogous to the WalRK TCS found in Firmicutes). Modular Spr1875 presents a putative cell-wall binding module at the N-terminus and a catalytic C-terminal module (Spr1875) connected by a long linker.
View Article and Find Full Text PDFMol Cell Biol
December 2024
Department of Biology, University of Iowa, Iowa City, Iowa, USA.
Med15 is a general transcriptional regulator and tail module subunit within the RNA Pol II mediator complex. The Med15 protein has a well-structured N-terminal KIX domain, three activator binding domains (ABDs) and several naturally variable polyglutamine (poly-Q) tracts (Q1, Q2, Q3) embedded in an intrinsically disordered central region, and a C-terminal mediator association domain (MAD). We investigated how the presence of ABDs and changes in length and composition of poly-Q tracts influences Med15 activity using phenotypic, gene expression, transcription factor interaction and phase separation assays of truncation, deletion, and synthetic alleles.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109.
Detecting viral infection is a key role of the innate immune system. The genomes of some RNA viruses have a high CpG dinucleotide content relative to most vertebrate cell RNAs, making CpGs a molecular marker of infection. The human zinc-finger antiviral protein (ZAP) recognizes CpG, mediates clearance of the foreign CpG-rich RNA, and causes attenuation of CpG-rich RNA viruses.
View Article and Find Full Text PDFBiomol NMR Assign
December 2024
Department of Molecular Biophysics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
Natural macrocyclic peptides produced by microorganisms serve as valuable resources for therapeutic compounds, including antibiotics, anticancer agents, and immune suppressive agents. Nonribosomal peptide synthetases (NRPSs) are responsible for the biosynthesis of macrocyclic peptides. NRPSs are large multimodular enzymes, and each module recognizes and incorporates one specific amino acid into the polypeptide product.
View Article and Find Full Text PDFElife
December 2024
Department of Biochemistry, Indian Institute of Science Bangalore, Bengaluru, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!