The novel fluorous organocatalyst bearing a diaminomethylenemalononitrile motif is prepared. The fluorous organocatalyst efficiently promotes asymmetric conjugate additions of ketones to nitroalkenes and results in high yields of these addition products with excellent enantioselectivities under solvent-free conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/cpb.c17-00596 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China.
The diverse utility of acyclic vinylsilanes has driven the interest in the synthesis of enantioenriched vinylsilanes bearing a Si-stereogenic center. However, the predominant approaches for catalytic asymmetric generation of Si-stereogenic vinylsilanes have mainly relied on transition metal-catalyzed reactions of alkynes with different silicon sources. Here we successfully realize the enantioselective synthesis of linear silicon-stereogenic vinylsilanes with good yields and enantiomeric ratios from simple alkenes under rhodium catalysis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fujian University of Technology, College of Ecological Environment and Urban Construction, 69, Xuefu South Road, Fuzhou 350118, China, 350118, Fuzhou, CHINA.
Rational exploration of cost-effective, durable, and high-performance electrode materials is imperative for advancing the progress of capacitive deionization (CDI). The integration of multicomponent layered double hydroxides (LDHs) with conjugated conductive metal-organic frameworks (c-MOFs) to fabricate bifunctional heterostructure electrode materials is considered a promising strategy. Herein, the fabrication of hierarchical conductive MOF/LDH/CF nanoarchitectures (M-CAT/LDH/CF) as CDI anodes via a controllable grafted-growth strategy is reported.
View Article and Find Full Text PDFAnal Sci
January 2025
Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-Ku, Sendai, 980-8578, Japan.
The diverse functional roles of RNA within cells have led to a growing interest in developing RNA-binding fluorescent probes to investigate RNA functions. In particular, the probes for double-stranded RNA (dsRNA) structures are of significant value given the importance of the secondary and tertiary RNA structures on their biologic functions. This review highlights our recent efforts on the development of triplex-forming peptide nucleic acid (TFP)-based probes for fluorescence sensing of dsRNA structures.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190 Austria.
Chemical 1,1'-glycosylation for the synthesis of non-reducing disaccharides is complicated by the need to simultaneously control the stereochemistry at two anomeric centers. While considerable progress has been made in the synthesis of α,α-disaccharides, the assembly of 1,1'-β,β- and 1,1'-β,α-linked non-reducing sugars has received comparatively less attention. Many naturally occurring non-reducing disaccharides and their biologically active mimetics feature asymmetrically located functional groups at different positions on the two pyranose rings, highlighting the demand for reliable stereoselective methods to synthesize fully orthogonally protected 1,1'-conjugated sugars suitable for targeted functionalisation to create important biomolecules.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States.
In this work, we describe a computational tool designed to determine the local dielectric constants (ε) of charge-neutral heterogeneous systems by analyzing dipole moment fluctuations from molecular dynamics (MD) trajectories. Unlike conventional methods, our tool can calculate dielectric constants for dynamically evolving selections of molecules within a defined region of space, rather than for fixed sets of molecules. We validated our approach by computing the dielectric constants of TIP3P water nanospheres, achieving results consistent with literature values for bulk water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!