Tumor necrosis factor alpha (TNF-α) is a cytokine that not only coordinates local and systemic immune responses [1, 2] but also regulates neuronal functions. Most prominently, glia-derived TNF-α has been shown to regulate homeostatic synaptic scaling [3-6], but TNF-α-null mice exhibited no apparent cognitive or emotional abnormalities. Instead, we found a TNF-α-dependent intergenerational effect, as mothers with a deficit in TNF-α programmed their offspring to exhibit low innate fear. Cross-fostering and conditional knockout experiments indicated that a TNF-α deficit in the maternal brain, rather than in the hematopoietic system, and during gestation was responsible for the low-fear offspring phenotype. The level of innate fear governs the balance between exploration/foraging and avoidance of predators and is thus fundamentally important in adaptation, fitness, and survival [7]. Because maternal exercise and activity are known to reduce both brain TNF-α [8] and offspring innate fear [9], whereas maternal stress has been reported to increase brain TNF-α [10] and offspring fear and anxiety [11, 12], maternal brain TNF-α may report environmental conditions to promote offspring behavioral adaptation to their anticipated postnatal environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170164 | PMC |
http://dx.doi.org/10.1016/j.cub.2017.10.071 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!