Cellular organisms in different domains of life employ structurally unrelated, non-homologous DNA primases for synthesis of a primer for DNA replication. Archaea and eukaryotes encode enzymes of the archaeo-eukaryotic primase (AEP) superfamily, whereas bacteria uniformly use primases of the DnaG family. However, AEP genes are widespread in bacterial genomes raising questions regarding their provenance and function. Here, using an archaeal primase-polymerase PolpTN2 encoded by pTN2 plasmid as a seed for sequence similarity searches, we recovered over 800 AEP homologs from bacteria belonging to 12 highly diverse phyla. These sequences formed a supergroup, PrimPol-PV1, and could be classified into five novel AEP families which are characterized by a conserved motif containing an arginine residue likely to be involved in nucleotide binding. Functional assays confirm the essentiality of this motif for catalytic activity of the PolpTN2 primase-polymerase. Further analyses showed that bacterial AEPs display a range of domain organizations and uncovered several candidates for novel families of helicases. Furthermore, sequence and structure comparisons suggest that PriCT-1 and PriCT-2 domains frequently fused to the AEP domains are related to each other as well as to the non-catalytic, large subunit of archaeal and eukaryotic primases, and to the recently discovered PriX subunit of archaeal primases. Finally, genomic neighborhood analysis indicates that the identified AEPs encoded in bacterial genomes are nearly exclusively associated with highly diverse integrated mobile genetic elements, including integrative conjugative plasmids and prophages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862659 | PMC |
http://dx.doi.org/10.1016/j.jmb.2017.11.014 | DOI Listing |
Hereditas
January 2025
Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.
Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).
View Article and Find Full Text PDFJ Cheminform
January 2025
School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.
G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.
View Article and Find Full Text PDFAnn Clin Microbiol Antimicrob
January 2025
Department of Science and Environment, Roskilde University, Roskilde, Denmark.
Background: Highly frequent colorectal cancer (CRC) is predicted to have 3.2 million novel cases by 2040. Tumor microenvironment (TME) bacteriome and metabolites are proposed to be involved in CRC development.
View Article and Find Full Text PDFBMC Public Health
January 2025
Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Department of Community and Family Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran., Shahid Hemmat Highway, Tehran, P.O Box: 14665-354, 1449614535, Iran.
Introduction: Although COVID-19 has altered various harms and exacerbated the prevalence of some of them, this period has also set the stage for the emergence of new harms. The present study aims to identify the emerging harms resulting from the COVID-19 outbreak in Iran.
Methods: The study was conducted using a qualitative content analysis approach through semi-structured interviews with 21 experts and professors knowledgeable about social harms and COVID-19 consequences who were selected through purposive and theoretical sampling.
Sci Rep
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!