Flumioxazin, an N-phenylimide herbicide, inhibits protoporphyrinogen oxidase (PPO), a key enzyme in heme biosynthesis in mammals, and causes rat-specific developmental toxicity. The mechanism has mainly been clarified, but no research has yet focused on the contribution of its metabolites. We therefore conducted in vivo metabolism studies in pregnant rats and rabbits, and found 6 major known metabolites in excreta. There was no major rat-specific metabolite. The most abundant component in rat fetuses was APF, followed by flumioxazin and 5 identified metabolites. The concentrations of flumioxazin and these metabolites in fetuses were lower in rabbits than in rats. In vitro PPO inhibition assays with rat and human liver mitochondria showed that flumioxazin is a more potent PPO inhibitor than the metabolites. There were no species differences in relative intensity of PPO inhibition among flumioxazin and these metabolites. Based on the results of these in vivo and in vitro experiments, we concluded that flumioxazin is the causal substance of the rat-specific developmental toxicity. As a more reliable test system for research on in vitro PPO inhibition, cell-based assays with rat, rabbit, monkey, and human hepatocytes were performed. The results were consistent with those of the mitochondrial assays, and rats were more sensitive to PPO inhibition by flumioxazin than humans, while rabbits and monkeys were almost insensitive. From these results, the species difference in the developmental toxicity was concluded to be due to the difference in sensitivity of PPO to flumioxazin, and rats were confirmed to be the most sensitive of these species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2017.11.028 | DOI Listing |
Ultrason Sonochem
January 2025
School of Food and Biological Engineering Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:
This research aimed to evaluate the effect of triple-frequency ultrasound treatment (TFUT), germination (GE), and traditional soaking (TS) methods on the nutritional and techno-functional properties of two different barley varieties, including ZQ2000 and XMLY22. Both ZQ2000 and XMLY22 varieties exhibited the highest total phenolic content (TPC) with 840.73 ± 23.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, China. Electronic address:
The wilting and yellowing of leafy vegetables caused by spoilage bacteria resulted in serious resource wastage. This study investigated the efficacy of a combined lactic acid (LA) and tartaric acid (TA) treatment against four predominant spoilage bacteria (Erwinia persicina, Citrobacter freundii, Pseudomonas putida, and Pseudomonas punonensis) isolated from spinach and oilseed rape. Detailed analysis using Fourier-transform infrared spectroscopy, flow cytometry, scanning electron microscopy, and light microscopy revealed substantial cellular damage in the bacteria treated by LA and TA, including loss of intracellular material, and collapse of cellular morphology, as well as effective biofilm removal.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Plant Pathology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
Background: Bacillus species produce antimicrobial lipopeptides (LPs) and methyl jasmonate (MeJA) induces resistance in harvested fruits against postharvest pathogens. However, there is limited evidence of the combined efficacy of Bacillus LPs and MeJA to suppress postharvest diseases.
Results: This study presents the combined effect of Bacillus LPs and MeJA to suppress P.
Antioxidants (Basel)
December 2024
College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China.
Pear fruit brown rot, caused by , affects pear fruit yields and quality. The present study determined T6 (T6) peptaibols as a biological control alternative to synthetic fungicides and assessed its efficacy against through dual plate culture and surface spraying at different concentrations. T6 peptaibols effectively inhibited growth, achieving an 85.
View Article and Find Full Text PDFFood Chem
December 2024
SKL of Marine Food Processing & Safety Control, National Engineering Research Centre of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Heat treatment is the most common processing method in Apostichopus japonicus (A. japonicus) processing. However, improper heat treatment can lead to the degradation of protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!