Determination of Fosetyl and Phosphonic Acid at 0.010 mg/kg Level by Ion Chromatography Tandem Mass Spectrometry.

J Agric Food Chem

Research and Development Department, GALAB Laboratories GmbH , Am Schleusengraben 7, 21029 Hamburg, Germany.

Published: January 2018

A new sensitive, fast, and robust method using ion chromatography tandem mass spectrometry (IC-MS/MS) for the determination of fosetyl and phosphonic acid in plant-derived matrices was developed. For compensation of matrix effects and differences in recovery rates the isotopically labeled internal standard (ILIS) O-labeled phosphonic acid was added to the samples prior to the extraction of the target compounds. The validation of the method for the matrices tomato, apple, lemon, sultana, avocado, and wheat was performed according to the actual EU guidance document SANTE/11945/2015. The precision and accuracy were determined in five replicates at spiking levels of 0.010 and 0.100 mg/kg with recovery rates between 76 and 105% and RSDs between 1.2 and 17.8%. In this paper, it was achieved for the first time to detect both fosetyl and phosphonic acid at the reporting level of 0.010 mg/kg most relevant for organic plant food commodities.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.7b03464DOI Listing

Publication Analysis

Top Keywords

phosphonic acid
16
fosetyl phosphonic
12
determination fosetyl
8
0010 mg/kg
8
ion chromatography
8
chromatography tandem
8
tandem mass
8
mass spectrometry
8
recovery rates
8
phosphonic
4

Similar Publications

Although is a key cause of subclinical mastitis in Danish dairy cows, its sensitivity to antimicrobials remains unexplored. Here, we analyzed sixty isolates derived from 42 dairy cows across six conventional dairy herds in Denmark. Phenotypic resistance was measured by antimicrobial susceptibility testing and minimum inhibitory concentration (MIC) analysis, and genotypic resistance was examined through whole-genome sequencing and identification of antimicrobial resistance genes (ARGs).

View Article and Find Full Text PDF

Glufosinate (GLUF) and glyphosate (GLY) are nonselective phosphorus-containing amino acid herbicides that are widely used in agricultural gardens and noncultivated areas. These herbicides give rise to a number of key metabolites, with 3-methyl phosphinicopropionic acid (MPPA), -acetyl glufosinate (-acetyl GLUF), aminomethyl phosphonic acid (AMPA), -acetyl aminomethyl phosphonic acid (-acetyl AMPA), -acetyl glyphosate (-acetyl GLY), -methyl glyphosate (-methyl GLY) as the major metabolites obtained from GLUF and GLY. Extensive use of these herbicides may lead to their increased presence in the environment, especially aquatic ecosystems.

View Article and Find Full Text PDF

Combination of atom transfer radical polymerization and alkyne-azide click-chemistry for the synthesis of phosphonic acid cation exchange materials.

J Chromatogr A

January 2025

Faculty of Chemistry, Analytical Chemistry, University of Marburg, Hans-Meerwein-Str. 4, Marburg 35043, Germany. Electronic address:

Phosphonic acid cation exchange materials (PCX) are synthesized by atom transfer radical polymerization (ATRP) followed by alkyne-azide click-chemistry. ATRP is used to synthesize polymeric chains of diethyl 4-vinylbenzylphosphonate with different chain lengths, which are covalently bonded to the surface of monodisperse polystyrene-divinylbenzene (PS/DVB) particles by click-chemistry. The functionalized particles are characterized by FIB-SEM, IR and Schoeniger combustion followed by chromatographic experiments.

View Article and Find Full Text PDF

Proton Exchange Membrane with Dual-Active-Center Surpasses the Conventional Temperature Limitations of Fuel Cells.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.

High temperature-proton exchange membrane fuel cells (HT-PEMFC) call for ionomers with low humidity dependence and elevated-temperature resistance. Traditional perfluorosulfonic acid (PFSA) ionomers encounter challenges in meeting these stringent requirements. Herein, this study reports a perfluoroimide multi-acid (PFMA) ionomer with dual active centers achieved through the incorporation of sulfonimide and phosphonic acid groups into the side chain.

View Article and Find Full Text PDF

The widespread use of glyphosate and the high dependence of the agricultural industry on this herbicide cause environmental pollution and pose a threat to living organisms. One of the appropriate solutions in sustainable agriculture to deal with pollution caused by glyphosate and its metabolites is creating a symbiotic relationship between plants and mycorrhizal fungi. Glomalin-related soil protein is a key protein for the bioremediation of glyphosate and its metabolite aminomethyl phosphonic acid in soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!