In this study, the effect of chloramine T (Chl-T) on the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and glutathione S-transferase (GST); the levels of reduced (GSH) and oxidised glutathione (GSSG) and their ratios; and also membrane lipid peroxidation (LPO) levels in Phanerochaete chrysosporium were investigated in a dose- (0.25-1 mmol/L) and time-dependent (1.5-9 h) manner. The highest SOD activity was observed in 0.5 mmol/L Chl-T at 6th hour as 1.48-fold of its control. The observed highest level in CAT activities was 4.6-fold of control in 0.5 and 0.75 mmol/L at the 6th hour. The GSH levels that were over the control showed decreasing tendency from the beginning of incubation, except 0.25 mmol/L. In contrast with GSH level variations, GSSG levels reached 10.0-fold of its control by showing increasing tendency with the increases in concentration and time. While the GSH/GSSG ratios were over the control at 0.25 mmol/L during all incubation, they fell under the control values at the earlier hours of incubation with the increasing concentrations of Chl-T. Glutathione-related enzymes GSH-Px, GR and GST were also induced with Chl-T treatment, and the highest activities were 3.29-, 7.5- and 6.56-fold of their controls, respectively. On the other hand, the increases in LPO levels with increasing concentration and time up to 5.27-fold of its control showed that the inductions observed in antioxidant system could not prevent the Chl-T-based oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12223-017-0571-2DOI Listing

Publication Analysis

Top Keywords

oxidative stress
8
antioxidant system
8
phanerochaete chrysosporium
8
lpo levels
8
6th hour
8
concentration time
8
control
7
levels
5
chloramine induced
4
induced oxidative
4

Similar Publications

Background: Polycystic Ovarian Syndrome (PCOS) is an endocrine disorder associated with increased risk of kidney and liver damage. Current treatments have shown contradictory outcomes, and their long-term use causes unwanted side effects. could serve as a complementary medicine to current PCOS treatments.

View Article and Find Full Text PDF

DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.

View Article and Find Full Text PDF

Reductive Adjuvant Nanosystem for Alleviated Atopic Dermatitis Syndromes.

ACS Nano

January 2025

College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China.

Atopic dermatitis (AD) is a recurrent and chronic inflammatory skin condition characterized by a high lifetime prevalence and significant impairment of patients' quality of life, primarily due to intense itching and discomfort. However, current pharmacological interventions provide only moderate efficacy and are frequently accompanied by adverse side effects. The immune-pathogenesis of AD involves dysregulation of the Th2 immune response and exacerbation of inflammation related to excessive reactive oxygen species (ROS).

View Article and Find Full Text PDF

Eggshell membrane (ESM) is a rich source of bioactive compounds, including proteins, peptides, and antioxidants, contributing to its potential therapeutic benefits. These natural antioxidants might help neutralize reactive oxygen species (ROS) and modulate inflammatory responses, which are often linked with chondrocyte damage in osteoarthritis. In this study, we investigated the functional effects of ESM proteins on HO-induced oxidative stress in a neonatal canine chondrocytes.

View Article and Find Full Text PDF

Background: Short-chain fatty acids (SCFAs), derived from the fermentation of dietary fiber by intestinal commensal bacteria, have demonstrated protective effects against acute lung injury (ALI) in animal models. However, the findings have shown variability across different studies. It is necessary to conduct a comprehensive evaluation of the efficacy of these treatments and their consistency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!