Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The K-Cl co-transporter KCC2 is a neuron-specific, Cl extruder that uses K gradient for maintaining low intracellular [Cl]. It is indeed well established that sustaining an outwardly-directed electrochemical Cl gradient across the neuronal membrane is fundamental for a proper function of postsynaptic GABA receptor signaling. In particular, studies in the last two decades have shown that KCC2 activity is important to maintain a hyperpolarizing GABAergic neurotransmission. Conversely, low KCC2 activity should lead to depolarizing, and under specific conditions, excitatory GABAergic transmission. Not surprisingly given the critical role of KCC2 in regulating the inhibitory drive, alterations in its expression levels and activity are linked with epilepsy. Here, we will first summarize data regarding the role of KCC2 in epileptiform synchronization. Next, we will review evidence indicating that KCC2 expression and function are altered in chronic epileptic disorders, both in the developing and adult brain. We will also go through recent findings regarding the molecular mechanisms underlying the changes in KCC2 activity that occur following seizures. Finally, we will consider the modulation of KCC2 function as a potential, novel therapeutic target for the treatment of epileptic disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pneurobio.2017.11.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!