L-DOPA-induced dyskinesia (LID) remains a significant problem in the management of Parkinson's disease (PD). In rodent and macaque models of PD, delta opioid receptor agonists have anti-parkinsonian actions while mu opioid antagonists can reduce the expression of LID. DPI-289 is a novel molecule with a unique combination of opioid receptor DAMA actions: delta agonist (K: 0.73 nM); mu antagonist (K: 12 nM). We demonstrated that DPI-289 has oral bioavailability and established its pharmacokinetic profile in both rat and primate. We hypothesised that these combined DAMA actions would provide an enhancement of L-DOPA effect without an associated increase in dyskinesia. In parkinsonian 6-OHDA lesioned rats and MPTP-lesioned macaques, DPI-289 provided anti-parkinsonian actions as monotherapy and an enhancement of L-DOPA benefit. Thus, acute administration of DPI-289 (3 mg/kg, p.o.) to 6-OHDA-lesioned rats produced a significant reduction in forelimb asymmetry (by 48%) that was maintained throughout the fifteen-day repeat-treatment period. Importantly, and in contrast to L-DOPA administration (6 mg/kg, i.p.), these benefits were not compromised by the development of abnormal involuntary movements. In the macaque, as monotherapy, DPI-289 (10 and 20 mg/kg) had significant, though incomplete, anti-parkinsonian actions lasting approximately 4 h. These benefits were not associated with dyskinesia. In fact, over the 6 h period of observation, DPI-289 (20 mg/kg) decreased parkinsonism by 19% and increased activity by 67% compared to vehicle treatment. By contrast, while high-dose L-DOPA (LDh) alone alleviated parkinsonism (for 3 h) this benefit was accompanied by significant dyskinesia that was disabling in nature. LDh provided a 50% reduction in parkinsonism over 6 h and 151% increase in activity. The combination of DPI-289 (20 mg/kg) and a low-dose of L-DOPA (LDl) provided anti-parkinsonian benefits greater than LDl alone without eliciting any significant dyskinesia. Treatment with LDl alone provided only transient statistically significant anti-parkinsonian benefit. However, the combination of LDl and DPI-289 reduced parkinsonism for 6 h (duration of monitoring), with parkinsonism being reduced by 35% and activity increased by 90% but with no increase in dyskinesia over that observed with LDl alone. Thus, DPI-289 has potential to improve the benefits of dopaminergic therapy in Parkinson's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2017.11.046 | DOI Listing |
Background: The therapeutic management of dementia with Lewy bodies (LBD) is a challenge given the high sensitivity to drugs in this disease. This is particularly sensitive with regard to the management of parkinsonism. In particular, treatment of motor symptoms with levodopa or dopaminergic agonists poses a risk of worsening cognitive and behavioral symptoms.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
Background: Glucagon-like peptide 1 (GLP-1) is a peptide hormone that plays several physiological roles in treating diabetes and in protecting the brain. Recent clinical trials testing 4 different GLP-1 class drugs in phase 2 trials showed a clear correlation between neuroprotection and the ability to cross the BBB. Exenatide and Lixisenatide both showed excellent protective effects in patients Parkinson's disease (PD) and both drugs can readily cross the BBB.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.
Background: Parkinson's disease is an hypokinetic disorder characterized by selective loss of dopaminergic in substantia nigra pars compacta (SNPc) region of mid-brain. Dopaminergic degeneration of neurons is considered to be due to oxidative stress, neuroinflammation, neurons mitochondrial dysfunction and glutamate excitotoxicity etc. Filgrastim has been reported to produce anti-oxidant, anti-inflammatory and neuromodulatory actions in previous studies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
MRC Protein Phosphorylation and Ubiquitylation Unit, Dundee, Scotland, United Kingdom.
Background: Accumulation of misfolded a-synuclein protein in intracellular inclusion bodies of dopaminergic neurons underlies the pathogenesis of synucleinopathies, which include Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA). Therefore, clearance of misfolded α-synuclein from dopaminergic neurons could in principle offer a an approach for modifying synucleinopathies, which currently remain untreatable.
Method: In this study, we employ the Affinity-directed PROtein Missile (AdPROM) system consisting of the substrate receptor of the CUL2-E3 ligase complex VHL and a nanobody selectively recognising the human α-synuclein protein RESULT: We demonstrate targeted degradation of endogenous α-synuclein from human cell lines with exquisite selectivity.
Alzheimers Dement
December 2024
National Institute on Aging, NIH, Baltimore, MD, USA.
Background: Epidemiological studies report an elevated risk of neurodegenerative disorders, particularly Parkinson's disease (PD), in patients with type 2 diabetes mellitus (T2DM) that is mitigated in those prescribed incretin mimetics or dipeptidyl peptidase 4 inhibitors (DPP-4Is). Incretin mimetic repurposing appears promising in human PD and Alzheimer's disease (AD) clinical trials. DPP-4Is are yet to be evaluated in PD or AD human studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!