Use of alternative alkali chlorides in RT and PCR of polynucleotides containing G quadruplex structures.

Anal Biochem

Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Cerro Blanco 141, Colonia Colinas del Cimatario, Querétaro, QRO 76090, Mexico. Electronic address:

Published: February 2018

Several alkali chlorides were compared for their use in reverse transcription (RT) and PCR of different types of nucleic acid templates. On a test region of biological DNA incapable of forming G quadruplex (G4) structures, Taq DNA polymerase showed similar PCR performance with 50 mM KCl, CsCl, LiCl, and NaCl. In contrast, on a synthetic model polydeoxyribonucleotide prone to G4 formation, good PCR amplification was obtained with 50 mM CsCl, but little or none with LiCl or KCl. Similarly, in RT of a G4-prone model polyribonucleotide, MMLV reverse transcriptase produced a good yield with 50 mM CsCl, mediocre yields with LiCl or without added alkali chloride, and a poor yield with 50 mM KCl. The full RT-PCR assay starting from the G4-prone polyribonucleotide, showed good results with CsCl in both stages, poor results with LiCl, and no product formation with KCl. The model polynucleotides showed fast G quadruplex formation under PCR or RT conditions with 50 mM KCl, but not with CsCl or LiCl. The results argue for the use of CsCl instead of KCl for RT and PCR of G4-prone sequences. No advantage was observed when using the 7-deaza type nucleotide analog cdGTP in PCR amplification of the G4-prone polydeoxyribonucleotide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2017.11.021DOI Listing

Publication Analysis

Top Keywords

50 mm kcl
12
cscl licl
12
alkali chlorides
8
quadruplex structures
8
kcl cscl
8
pcr amplification
8
50 mm cscl
8
yield 50 mm
8
pcr
7
kcl
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!