Synergistic effect of cysteamine, leukemia inhibitory factor, and Y27632 on goat oocyte maturation and embryo development in vitro.

Theriogenology

Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China; Renova Life Inc., College Park, MD 20742, USA. Electronic address:

Published: March 2018

Goat oocyte in vitro maturation is associated with a variable efficiency of embryo development after in vitro fertilization (IVF). Here, we developed a novel maturation procedure to evaluate the cellular effect of cysteamine (Cys), leukemia inhibitory factor (LIF) and Y27632 on oocyte in vitro maturation in native Chinese Yangtze river white goats. Oocytes were collected by slicing ovary tissues and matured for 24 h in vitro prior to IVF. Presumptive fertilized oocytes were cultured in embryo media for 8 days. Maturation rates were similar in gonadotropin basal maturation medium and the same medium supplemented with Cys, LIF, or Y27362 (41.0-48.0%; P > 0.05). However, when two substances were co-supplemented into the medium, the maturation rate was higher in the Cys+LIF group than in the LIF+Y27362 and Cys+Y27362 groups (60.0% vs. 43.1% and 25.8%, respectively; P < 0.05). Co-supplementation of all three substances into the medium achieved the highest maturation rate (67.5%; P < 0.05). Compared with oocytes in gonadotropin basal maturation medium, those in medium supplemented with Cys showed increased fertilization (56.1% vs. 72.1%), cleavage (36.7% vs. 44.8%), and blastocyst development (1.7% vs. 4.2%), respectively (P < 0.05). Cys+LIF supplementation further improved fertilization (81.6%), cleavage (54.9%), and blastocyst development (6%; P < 0.05). Furthermore, combined supplementation of all three substances resulted in the best fertilization (84.9%), cleavage (70.7%), and blastocyst development (10.3%; P < 0.05). Resultant IVF blastocysts possessed an average cell number as high as 276 ± 45 per embryo. This is the first study to report increased efficiency of caprine oocyte maturation by combined Cys, LIF, and Y27632 supplementation into basal maturation medium, leading to improved fertilization and embryo development in vitro post-IVF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.theriogenology.2017.11.028DOI Listing

Publication Analysis

Top Keywords

leukemia inhibitory
8
inhibitory factor
8
goat oocyte
8
embryo development
8
development in vitro
8
oocyte in vitro
8
in vitro maturation
8
maturation
7
in vitro
5
synergistic cysteamine
4

Similar Publications

A Simple Machine Learning-Based Quantitative Structure-Activity Relationship Model for Predicting pIC Inhibition Values of FLT3 Tyrosine Kinase.

Pharmaceuticals (Basel)

January 2025

Centro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile.

Acute myeloid leukemia (AML) presents significant therapeutic challenges, particularly in cases driven by mutations in the FLT3 tyrosine kinase. This study aimed to develop a robust and user-friendly machine learning-based quantitative structure-activity relationship (QSAR) model to predict the inhibitory potency (pIC values) of FLT3 inhibitors, addressing the limitations of previous models in dataset size, diversity, and predictive accuracy. Using a dataset which was 14 times larger than those employed in prior studies (1350 compounds with 1269 molecular descriptors), we trained a random forest regressor, chosen due to its superior predictive performance and resistance to overfitting.

View Article and Find Full Text PDF

: Pancreatic ductal adenocarcinoma (PDAC), expecting to be the second leading cause of cancer deaths by 2030, resists immune checkpoint therapies due to its immunosuppressive tumor microenvironment (TME). Leukemia inhibitory factor (LIF) is a key target in PDAC, promoting stemness, epithelial-mesenchymal transition (EMT), and therapy resistance. Phase 1 clinical trials showed anti-LIF therapy is safe but with limited efficacy, suggesting better outcomes when combined with chemotherapy, radiotherapy, or immunotherapy.

View Article and Find Full Text PDF

LLT1 overexpression renders allogeneic-NK resistance and facilitates the generation of enhanced universal CAR-T cells.

J Exp Clin Cancer Res

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.

Background: The benefit of universal CAR-T cells over autologous CAR-T cell therapy is that they are a treatment that is ready to use. However, the prevention of graft-versus-host disease (GVHD) and host-versus-graft reaction (HVGR) remains challenging. Deleting class I of human leukocyte antigen (HLA-I) and class II of human leukocyte antigen (HLA-II) can prevent rejection by allogeneic T cells; however, natural killer (NK) cell rejection due to the loss of self-recognition remains unresolved.

View Article and Find Full Text PDF

Human Oncostatin M deficiency underlies an inherited severe bone marrow failure syndrome.

J Clin Invest

January 2025

Laboratory of Genome Dynamics in the Immune, INSERM UMR 116, Équipe Labellisée LIGUE 2023, Paris, France.

Oncostatin M (OSM) is a cytokine with the unique ability to interact with both the OSM receptor (OSMR) and the leukemia inhibitory factor receptor (LIFR). On the other hand, OSMR interacts with IL31RA to form the interleukin-31 receptor. This intricate network of cytokines and receptors makes it difficult to understand the specific function of OSM.

View Article and Find Full Text PDF

Introduction: Maternal infections such as chorioamnionitis could impact fetal lung development by altering cell proliferation and apoptosis. Chorioamnionitis favors the multiple pleiotropic cytokines production such as LIF (leukemia inhibitory factor) and an inflammation-related protein p53. The cytokine production can lead to lung tissue damage and lung disease development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!