Development of a microfluidic platform for high-throughput screening of non-viral gene delivery vectors.

Biotechnol Bioeng

Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta,", Politecnico di Milano, Milan, Italy.

Published: March 2018

The grail of gene delivery is the development of delivery vectors as effective and non-cytotoxic as possible. In this regard, there is an urgent need of new tools for the straightforward and quantitative assessment of transfection efficiency and cytotoxicity simultaneously. We herein reported the development and validation of an easy-to-use lab-on-chip platform to perform cell transfection assays for unbiased, high-throughput selection of more and more effective gene delivery vectors by using two commercially sourced lipids, Lipofectamine 2000 and FuGene 6. A single PDMS-layer platform was endowed with: i) a chaotic serial dilution generator, designed for the automatic generation of a linear lipoplex dilution (from 100% to 0% with 25% steps) independently delivered to; and ii) the downstream culture and transfection module consisting in five units, each composed of 33 serially connected and fluidically connected culture chambers for trapping small populations of ≈10 cells/chamber. In the absence of any transfectant, cells spread and duplicated up to 2 days. Besides, cells were transfected with EGFP-encoding reporter gene. The very facile visual inspection of the microdevice by means of a microscope and a semi-automated analytical method allowed pinpointing the best transfection conditions in terms of efficiency, cytotoxicity, cell doubling rates, and morphological changes at once.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.26506DOI Listing

Publication Analysis

Top Keywords

gene delivery
12
delivery vectors
12
efficiency cytotoxicity
8
development microfluidic
4
microfluidic platform
4
platform high-throughput
4
high-throughput screening
4
screening non-viral
4
gene
4
non-viral gene
4

Similar Publications

Pulmonary Delivery of Nonviral Nucleic Acid-Based Vaccines With Spotlight on Gold Nanoparticles.

Wiley Interdiscip Rev Nanomed Nanobiotechnol

January 2025

School of Pharmacy and Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.

Nucleic acid-based vaccines are leading-edge tools in developing next-generation preventative care. Much research has been done to convert vaccine gene therapy from an invasive to a noninvasive administration approach. The lung's large surface area and permeability make the pulmonary route a promising noninvasive delivery option for vaccines, with systemic and local applications.

View Article and Find Full Text PDF

The (re)emergence of aerosol delivery: Treatment of pulmonary diseases and its clinical challenges.

J Control Release

January 2025

Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France. Electronic address:

Aerosol delivery represents a rapid and non-invasive way to directly reach the lungs while escaping the hepatic first-pass effect. The development of pulmonary drugs for respiratory diseases such as cystic fibrosis, lung infections, pulmonary fibrosis or lung cancer requires an enhanced understanding of the relationships between the natural physiology of the respiratory system and the pathophysiology of these conditions. This knowledge is crucial to better predict and thereby control drug deposition.

View Article and Find Full Text PDF

Potentiating the effect of immunotherapy in pancreatic cancer using gas-entrapping materials.

Biomaterials

January 2025

Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA; Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA. Electronic address:

Immune checkpoint inhibitors (ICIs) show limited success in treating pancreatic ductal adenocarcinoma (PDAC), largely due to immune evasion mechanisms, including downregulating expression of major histocompatibility complex class I (MHC-I). Our retrospective analysis demonstrated that smoking - a state of elevated CO exposure - is correlated with increased MHC I expression in pancreatic tumors. Here we tested our hypothesis that introducing exogenous CO augments the anti-cancer effects of immunotherapy.

View Article and Find Full Text PDF

Nano-polymeric platinum activates PAR2 gene editing to suppress tumor metastasis.

Biomaterials

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, China. Electronic address:

Metastasis as the hallmark of cancer preferentially contributes to tumor recurrence and therapy resistance, aggrandizing the lethality of patients with cancer. Despite their robust suppressions of tumor progression, chemotherapeutics failed to attenuate cancer cell migration and even triggered pro-metastatic effects. In parallel, protease-activated receptor 2 (PAR2), a member of the G protein-coupled receptor subfamily, actively participates in cancer metastasis via multiple signal transduction pathways.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!