Cryptococcus neoformans is an opportunistic fungal pathogen that causes life-threatening meningitis most commonly in populations with impaired immunity. Here, we resolved the transcriptome of the human brain endothelium challenged with C. neoformans to establish whether C. neoformans invades the CNS by co-opting particular signalling pathways as a means to promote its own entry. Among the 5 major pathways targeted by C. neoformans, the EPH-EphrinA1 (EphA2) tyrosine kinase receptor-signalling pathway was examined further. Silencing the EphA2 receptor transcript in a human brain endothelial cell line or blocking EphA2 activity with an antibody or chemical inhibitor prevented transmigration of C. neoformans in an in vitro model of the blood-brain barrier (BBB). In contrast, treating brain endothelial cells with an EphA2 chemical agonist or an EphA2 ligand promoted greater migration of fungal cells across the BBB. C. neoformans activated the EPH-tyrosine kinase pathway through a CD44-dependent phosphorylation of EphA2, promoting clustering and internalisation of EphA2 receptors. Moreover, HEK293T cells expressing EphA2 revealed an association between EphA2 and C. neoformans that boosted internalisation of C. neoformans. Collectively, the results suggest that C. neoformans promotes EphA2 activity via CD44, and this in turn creates a permeable barrier that facilitates the migration of C. neoformans across the BBB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5836489 | PMC |
http://dx.doi.org/10.1111/cmi.12811 | DOI Listing |
Sci Rep
January 2025
Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
Congenital anterior segment anomalies are disorders that affect the development of the eye and cause severe visual impairment. The molecular basis of congenital anterior segment anomalies is not well known. In this study, genome sequencing was performed on 27 families from diverse ethnicities with congenital anterior segment anomalies and 11 variants were identified, most of which were novel and family specific.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
Low-grade inflammation and pathological endochondral ossification are key processes underlying the progression of osteoarthritis, the most prevalent joint disease worldwide. In this study, we employed a multi-faceted approach, integrating publicly available datasets, analyses, experiments and models to identify new therapeutic candidates targeting these processes. Data mining of transcriptomic datasets identified EPHA2, a receptor tyrosine kinase associated with cancer, as being linked to both inflammation and endochondral ossification in osteoarthritis.
View Article and Find Full Text PDFJ Mol Cell Biol
December 2024
School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
Upon injury, fibroblasts in the surrounding tissue become activated, migrating into the wound in a controlled manner. Once they arrive, they contract the wound and remodel the stroma. While certain cell surface receptors promote fibroblast migration, others cause repulsion between fibroblasts upon contact, seemingly opposing their clustering within the wound bed.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
December 2024
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
Background: Thymic epithelial tumors (TETs) are infrequent malignancies that arise from the anterior mediastinum. Therapeutic options for TETs, especially thymic carcinoma (TC), remain relatively constrained. This study aims to investigate the oncogenic hub gene and its underlying mechanisms in TETs, as well as to identify potential therapeutic targets.
View Article and Find Full Text PDFBiomol NMR Assign
December 2024
Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt/Main, Germany.
Ephrin receptors regulate intercellular communication and are thus involved in tumor development. Ephrin receptor A2 (EphA2), in particular, is overexpressed in a variety of cancers and is a proven target for anti-cancer drugs. The N-terminal ligand-binding domain of ephrin receptors is responsible for the recognition of their ligands, ephrins, and is directly involved in receptor activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!