Functional cell-based assays are useful for comparing the effect of a treatment, drug, or condition on cells in culture. Cell lines are a commonly used model to replicate a normal biological process or a pathological condition. Trophoblasts within the placenta are required to perform a variety of functions, which include proliferation, differentiation, migration, and invasion for efficient placentation to occur. These functions are impaired in trophoblasts from preeclamptic pregnancies, and therefore functional cell-based assays can be utilized to measure differences and dissect molecular regulatory pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-7498-6_18 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-GuGyeonggi-Do 16419, Suwon-Si, South Korea.
Process intensification and simplification in biopharmaceutical manufacturing have driven the exploration of advanced feeding strategies to improve culture performance and process consistency. Conventional media design strategies, however, are often constrained by the stability and solubility challenges of amino acids, particularly in large-scale applications. As a result, dipeptides have emerged as promising alternatives.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
Macrophage-mediated inflammation plays a pivotal role in cardiovascular disease pathogenesis. However, current cell-based models lack a comprehensive understanding of crosstalk between macrophages and cardiomyocytes, hindering the discovery of effective therapeutic interventions. Here, a microfluidic model has been developed to facilitate the coculture of macrophages and cardiomyocytes, allowing for mapping key signaling pathways and screening potential therapeutic agents against inflammation-induced dynamic myocardial injury.
View Article and Find Full Text PDFNat Chem
January 2025
Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
Understanding the dynamics of membrane protein-ligand interactions within a native lipid bilayer is a major goal for drug discovery. Typically, cell-based assays are used, however, they are often blind to the effects of protein modifications. In this study, using the archetypal G protein-coupled receptor rhodopsin, we found that the receptor and its effectors can be released directly from retina rod disc membranes using infrared irradiation in a mass spectrometer.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. Electronic address:
Liver sinusoidal endothelial cells (LSECs) line the liver sinusoids and play a crucial role in liver function. Isolating LSECs is beneficial for their functional evaluation in vitro. Here, we provide a protocol for obtaining purified LSECs from mice via gradient centrifugation and magnetic cell sorting (MACS), yielding cells suitable for culture and downstream analyses.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
Purpose: Genome-wide association studies (GWAS) have identified multiple genetic loci associated with primary open-angle glaucoma (POAG). However, the mechanisms by which these loci contribute to POAG progression remain unclear. This study aimed to identify potential causative genes involved in the development of POAG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!