Fano resonances in bilayer graphene superlattices.

Sci Rep

Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060, Zacatecas, Zac., Mexico.

Published: December 2017

In this work, we address the ubiquitous phenomenon of Fano resonances in bilayer graphene. We consider that this phenomenon is as exotic as other phenomena in graphene because it can arise without an external extended states source or elaborate nano designs. However, there are not theoretical and/or experimental studies that report the impact of Fano resonances on the transport properties. Here, we carry out a systematic assessment of the contribution of the Fano resonances on the transport properties of bilayer graphene superlattices. Specifically, we find that by changing the number of periods, adjusting the barriers height as well as modifying the barriers and wells width it is possible to identify the contribution of Fano resonances on the conductance. Particularly, the coupling of Fano resonances with the intrinsic minibands of the superlattice gives rise to specific and identifiable changes in the conductance. Moreover, by reducing the angular range for the computation of the transport properties it is possible to obtain conductance curves with line-shapes quite similar to the Fano profile and the coupling profile between Fano resonance and miniband states. In fact, these conductance features could serve as unequivocal characteristic of the existence of Fano resonances in bilayer graphene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711848PMC
http://dx.doi.org/10.1038/s41598-017-16838-9DOI Listing

Publication Analysis

Top Keywords

fano resonances
28
bilayer graphene
16
resonances bilayer
12
transport properties
12
fano
9
graphene superlattices
8
resonances transport
8
contribution fano
8
resonances
6
graphene
5

Similar Publications

Manipulating Fano Coupling in an Opto-Thermoelectric Field.

Adv Sci (Weinh)

January 2025

Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.

Fano resonances in photonics arise from the coupling and interference between two resonant modes in structures with broken symmetry. They feature an uneven and narrow and tunable lineshape and are ideally suited for optical spectroscopy. Many Fano resonance structures have been suggested in nanophotonics over the last ten years, but reconfigurability and tailored design remain challenging.

View Article and Find Full Text PDF

This paper presents a novel investigation of a magnetic sensor that employs Fano/Tamm resonance within the photonic band gap of a one-dimensional crystal structure. The design incorporates a thin layer of gold (Au) alongside a periodic arrangement of Tantalum pentoxide ([Formula: see text]) and Cesium iodide ([Formula: see text]) in the configuration [Formula: see text]. We utilized the transfer matrix method in conjunction with the Drude model to analyze the formation of Fano/Tamm states and the permittivity of the metallic layer, respectively.

View Article and Find Full Text PDF

Resonant Auger Decay in Benzene.

J Phys Chem A

January 2025

Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.

We present ab initio calculations of the resonant Auger spectrum of benzene. In the resonant process, Auger decay ensues following the excitation of a core-level electron to a virtual orbital. Hence, resonant Auger decay gives rise to higher-energy Auger electrons compared to nonresonant decay.

View Article and Find Full Text PDF

We propose two types of structures to achieve the control of Fano and electromagnetically induced transparency (EIT) line shapes, in which dual one-dimensional (1D) photonic crystal nanobeam cavities (PCNCs) are side-coupled to a bus waveguide with different gaps. For the proposed type Ⅰ and type Ⅱ systems, the phase differences between the nanobeam periodic structures of the two cavities are and 0, respectively. The whole structures are theoretically analyzed via the coupled mode theory and numerically demonstrated using the three-dimensional finite-difference time-domain (3D FDTD) method.

View Article and Find Full Text PDF

Fano Resonance in Epsilon-Near-Zero Media.

Phys Rev Lett

December 2024

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.

Fano resonance is achieved by tuning two coupled oscillators and has exceptional potential for modulating light dispersion. Here, distinct from the classical Fano resonances achieved through photonics methodologies, we introduce the Fano resonance in epsilon-near-zero (ENZ) media with novel electromagnetic properties. By adjusting the background permeability of the ENZ host, the transmission spectrum exhibits various dispersive line shapes and covers the full range of Fano parameter q morphologies, from negative to positive infinity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!