The G protein-coupled receptor opsin is a phospholipid scramblase that facilitates rapid transbilayer phospholipid exchange in liposomes. The mechanism by which opsin scrambles lipids is unknown. It has been proposed that lipid translocation may occur at protein-protein interfaces of opsin dimers. To test this possibility, we rationally engineered QUAD opsin by tryptophan substitution of four lipid-facing residues in transmembrane helix 4 (TM4) that is known to be important for dimerization. Atomistic molecular dynamics simulations of wild type and QUAD opsins combined with continuum modeling revealed that the tryptophan substitutions lower the energetically unfavorable residual hydrophobic mismatch between TM4 and the membrane, reducing the drive of QUAD opsin to dimerize. We purified thermostable wild type and QUAD opsins, with or without a SNAP tag for fluorescence labeling. Single molecule fluorescence measurements of purified SNAP-tagged constructs revealed that both proteins are monomers. Fluorescence-based activity assays indicated that QUAD opsin is a fully functional scramblase. However, unlike wild type opsin which dimerizes en route to insertion into phospholipid vesicles, QUAD opsin reconstitutes as a monomer. We conclude that an engineered opsin monomer can scramble phospholipids, and that the lipid-exposed face of TM4 is unlikely to contribute to transbilayer phospholipid exchange.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711885 | PMC |
http://dx.doi.org/10.1038/s41598-017-16842-z | DOI Listing |
Int J Mol Sci
December 2021
Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
The viral gene delivery of optogenetic actuators to the surviving inner retina has been proposed as a strategy for restoring vision in advanced retinal degeneration. We investigated the safety of ectopic expression of human rod opsin (hRHO), and two channelrhodopsins (enhanced sensitivity CoChR-3M and red-shifted ReaChR) by viral gene delivery in ON bipolar cells of the mouse retina. Adult mice were bred to be retinally degenerate or non-retinally degenerate (homozygous and heterozygous for the mutation, respectively) and intravitreally injected with recombinant adeno-associated virus AAV2/2(quad Y-F) serotype containing a double-floxed inverted transgene comprising one of the opsins of interest under a CMV promoter.
View Article and Find Full Text PDFSci Rep
December 2017
Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
The G protein-coupled receptor opsin is a phospholipid scramblase that facilitates rapid transbilayer phospholipid exchange in liposomes. The mechanism by which opsin scrambles lipids is unknown. It has been proposed that lipid translocation may occur at protein-protein interfaces of opsin dimers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!