Phenylalanine ammonia-lyase (PAL) is the first enzyme of the general phenylpropanoid pathway catalyzing the nonoxidative elimination of ammonia from l-phenylalanine to give -cinnamate. In monocots, PAL also displays tyrosine ammonia lyase (TAL) activity, leading to the formation of -coumaric acid. The catalytic mechanism and substrate specificity of a major PAL from sorghum (; SbPAL1), a strategic plant for bioenergy production, were deduced from crystal structures, molecular docking, site-directed mutagenesis, and kinetic and thermodynamic analyses. This first crystal structure of a monocotyledonous PAL displayed a unique conformation in its flexible inner loop of the 4-methylidene-imidazole-5-one (MIO) domain compared with that of dicotyledonous plants. The side chain of histidine-123 in the MIO domain dictated the distance between the catalytic MIO prosthetic group created from Ala-Ser-Gly residues and the bound l-phenylalanine and l-tyrosine, conferring the deamination reaction through either the Friedel-Crafts or E reaction mechanism. Several recombinant mutant SbPAL1 enzymes were generated via structure-guided mutagenesis, one of which, H123F-SbPAL1, has 6.2 times greater PAL activity without significant TAL activity. Additional PAL isozymes of sorghum were characterized and categorized into three groups. Taken together, this approach identified critical residues and explained substrate preferences among PAL isozymes in sorghum and other monocots, which can serve as the basis for the engineering of plants with enhanced biomass conversion properties, disease resistance, or nutritional quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5813539PMC
http://dx.doi.org/10.1104/pp.17.01608DOI Listing

Publication Analysis

Top Keywords

substrate specificity
8
phenylalanine ammonia-lyase
8
tal activity
8
mio domain
8
pal isozymes
8
isozymes sorghum
8
pal
7
biochemical structural
4
structural analysis
4
analysis substrate
4

Similar Publications

Functional characterization and protein engineering of a O-methyltransferase involved in benzylisoquinoline alkaloid biosynthesis of Stephania tetrandra.

Int J Biol Macromol

January 2025

Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Jinhua Academy, Zhejiang Chinese Medical University, Jinhua 321015, China. Electronic address:

Benzylisoquinoline alkaloids (BIAs) are the primary active components of Stephania tetrandra. However, the molecular mechanisms underlying BIA biosynthesis in S. tetrandra remain poorly understood.

View Article and Find Full Text PDF

Verona-integron-metallo-β-lactamase (VIM-2) is one of the most widespread class B β-lactamase responsible for β-lactam resistance. Although active-site residues help in metal binding, the residues nearing the active-site possess functional importance. Here, to decipher the role of such residues in the activity and stability of VIM-2, the residues E146, D182, N210, S207, and D213 were selected through in-silico analyses and substituted with alanine using site-directed mutagenesis.

View Article and Find Full Text PDF

Molecular basis for the enzymatic inactivity of class III glutaredoxin ROXY9 on standard glutathionylated substrates.

Nat Commun

January 2025

Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.

Class I glutaredoxins (GRXs) are nearly ubiquitous proteins that catalyse the glutathione (GSH)-dependent reduction of mainly glutathionylated substrates. In land plants, a third class of GRXs has evolved (class III). Class III GRXs regulate the activity of TGA transcription factors through yet unexplored mechanisms.

View Article and Find Full Text PDF

Differential substrate specificity of ERK, JNK, and p38 MAP kinases toward Connexin 43.

J Biol Chem

January 2025

Department of Biological Sciences, Moravian University, 1200 Main Street, Bethlehem, PA 18018, USA. Electronic address:

Phosphorylation of connexin 43 (Cx43) is an important regulatory mechanism of gap junction (GJ) function. Cx43 is modified by several kinases on over 15 sites within its ∼140 amino acid-long C-terminus (CT). Phosphorylation of Cx43CT on S255, S262, S279, and S282 by ERK has been widely documented in several cell lines, by many investigators.

View Article and Find Full Text PDF

Promoted expression of a lipase for its application in EPA/DHA enrichment and mechanistic insights into its substrate specificity.

Int J Biol Macromol

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China. Electronic address:

Expanding toolkits of EPA/DHA enrichment from natural sources is essential for better satisfying increasing demands for them. Lipase K80, from Proteus vulgaris K80, showed an application potential in EPA/DHA enrichment, whereas no desired heterologous expression in generally regarded as safe (GRAS) hosts restricted its relevant applications. In this study, expression of lipase K80 in a well-reputed GRAS host, Pichia pastoris, was achieved and further enhanced via combining disruption of its C-terminal KKL motif with co-expression of N-Acetyltransferase Mpr1, with a cumulative increment of nearly 200 % in the secretion level and the volumetric activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!