T follicular helper (Tfh) cells are a subset of CD4 T cells that promote antibody production during vaccination. Conventional dendritic cells (cDCs) efficiently prime Tfh cells; however, conclusions regarding which cDC instructs Tfh cell differentiation have differed between recent studies. We found that these discrepancies might exist because of the unusual sites used for immunization in murine models, which differentially bias which DC subsets access antigen. We used intranasal immunization as a physiologically relevant route of exposure that delivers antigen to all tissue DC subsets. Using a combination of mice in which the function of individual DC subsets is impaired and different antigen formulations, we determined that CD11b migratory type 2 cDCs (cDC2s) are necessary and sufficient for Tfh induction. DC-specific deletion of the guanine nucleotide exchange factor DOCK8 resulted in an isolated loss of CD11b cDC2, but not CD103 cDC1, migration to lung-draining lymph nodes. Impaired cDC2 migration or development in DC-specific or knockout mice, respectively, led to reduced Tfh cell priming, whereas loss of CD103 cDC1s in mice did not. Loss of cDC2-dependent Tfh cell priming impaired antibody-mediated protection from live influenza virus challenge. We show that migratory cDC2s uniquely carry antigen into the subanatomic regions of the lymph node where Tfh cell priming occurs-the T-B border. This work identifies the DC subset responsible for Tfh cell-dependent antibody responses, particularly when antigen dose is limiting or is encountered at a mucosal site, which could ultimately inform the formulation and delivery of vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7847246 | PMC |
http://dx.doi.org/10.1126/sciimmunol.aam9169 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!