Antimicrobial photodynamic therapy (aPDT) could constitute an alternative therapy to antibiotics especially against superficial infections caused by bacteria involved in multidrug resistance processes. The aim of this study is to compare the efficacy of aPDT using the photosensitizer rose bengal (RB), combined or uncombined with gentamicin (GN), against Staphylococcus aureus. Different concentrations of RB (ranging from 0.03 to 64 μg/ml) were added to S. aureus in water suspensions or forming biofilms in the absence or presence of GN (1-40 μg/ml) and the samples were irradiated (18 or 37 J/cm). The number of viable bacteria was quantified by counting colony-forming units. RB-aPDT shows significant photoactivity. The combination of GN and RB-aPDT exerts a synergistic bactericidal effect against planktonic S. aureus. On the other hand, a synergistic effect is observed only when the maximum concentration tested of RB and GN was used in biofilm. According to these result the use of RB-aPDT alone or in combination with GN could be implemented against S. aureus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pdpdt.2017.11.012 | DOI Listing |
Pharmaceutics
December 2024
Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland.
Oral candidiasis, predominantly caused by , presents significant challenges in treatment due to increasing antifungal resistance and biofilm formation. Antimicrobial photodynamic therapy (aPDT) using natural photosensitizers like riboflavin and hypericin offers a potential alternative to conventional antifungal therapies. : A systematic review was conducted to evaluate the efficacy of riboflavin- and hypericin-mediated aPDT in reducing Candida infections.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
Antimicrobial resistance is a critical global challenge in the 21st century, validating Sir Alexander Fleming's warning about the misuse of antibiotics leading to resistant microbes. With a dwindling arsenal of effective antibiotics, it is imperative to concentrate on alternative antimicrobial strategies. Previous studies have not comprehensively discussed the advantages and limitations of various strategies, including bacteriophage therapy, probiotics, immunotherapies, photodynamic therapy, essential oils, nanoparticles and antimicrobial peptides (AMPs) within a single review.
View Article and Find Full Text PDFDent J (Basel)
January 2025
Discipline of Periodontics, Faculdade de Odontologia de Bauru, Universidade de São Paulo, São Paulo 05508-220, Brazil.
Individuals with Down syndrome (DS) often present with severe periodontal disease at a young age. Adjuvant treatments to scaling and root planing (SRP), such as antimicrobial photodynamic therapy (aPDT), may benefit this population. This study evaluated the effectiveness of aPDT as an adjunct to SRP in individuals with DS.
View Article and Find Full Text PDFDent J (Basel)
January 2025
Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil.
Diabetes mellitus and periodontitis share a significant, bidirectional relationship. Diabetes raises the risk of periodontitis and influences its severity, impacting tissue repair and bone metabolism. Conversely, periodontal inflammation can disrupt glycemic control, further complicating this interlinked relationship.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
Food waste and food safety issues caused by food spoilage have been brought into focus. The inhibition of food spoilage bacteria growth is the key to maintaining food quality and extending the shelf life of food. Photodynamic inactivation (PDI) is an efficient antibacterial strategy which provides a new idea for the antibacterial preservation of food.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!