Xylose transport in yeast for lignocellulosic ethanol production: Current status.

J Biosci Bioeng

Department of Chemical and Biological Engineering & Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA.

Published: March 2018

Lignocellulosic ethanol has been considered as an alternative transportation fuel. Utilization of hemicellulosic fraction in lignocelluloses is crucial in economical production of lignocellulosic ethanol. However, this fraction has not efficiently been utilized by traditional yeast Saccharomyces cerevisiae. Genetically modified S. cerevisiae, which can utilize xylose, has several limitations including low ethanol yield, redox imbalance, and undesired metabolite formation similar to native xylose utilizing yeasts. Besides, xylose uptake is a major issue, where sugar transport system plays an important role. These genetically modified and wild-type yeast strains have further been engineered for improved xylose uptake. Various techniques have been employed to facilitate the xylose transportation in these strains. The present review is focused on the sugar transport machineries, mechanisms of xylose transport, limitations and how to deal with xylose transport for xylose assimilation in yeast cells. The recent advances in different techniques to facilitate the xylose transportation have also been discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2017.10.006DOI Listing

Publication Analysis

Top Keywords

xylose transport
12
lignocellulosic ethanol
12
xylose
10
genetically modified
8
xylose uptake
8
sugar transport
8
facilitate xylose
8
xylose transportation
8
yeast
4
transport yeast
4

Similar Publications

Advances in fungal sugar transporters: unlocking the potential of second-generation bioethanol production.

Appl Microbiol Biotechnol

January 2025

Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.

Second-generation (2G) bioethanol production, derived from lignocellulosic biomass, has emerged as a sustainable alternative to fossil fuels by addressing growing energy demands and environmental concerns. Fungal sugar transporters (STs) play a critical role in this process, enabling the uptake of monosaccharides such as glucose and xylose, which are released during the enzymatic hydrolysis of biomass. This mini-review explores recent advances in the structural and functional characterization of STs in filamentous fungi and yeasts, highlighting their roles in processes such as cellulase induction, carbon catabolite repression, and sugar signaling pathways.

View Article and Find Full Text PDF

Alcoholysis of High-Solid xylose residue for methyl levulinate preparation and its kinetics.

Bioresour Technol

January 2025

School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Center for Outstanding Overseas Scientists, Zhengzhou 450001, China. Electronic address:

Achieving the efficient biomass alcoholysis to methyl levulinate (ML) under high solid content conditions and establishing its kinetic model are crucial, but remain challenging. Here, the alcoholysis of microcrystalline cellulose (MC) and xylose residue (XR) to ML under high solid content conditions using CuSO as a catalyst was reported. High yield (34.

View Article and Find Full Text PDF

This study aimed to compare the effects of cellobiose hydrolysis, whether occurring inside or outside the cell, on the ability of Saccharomyces cerevisiae strains to ferment this sugar and then apply the most effective strategy to industrial S. cerevisiae strains. Firstly, two recombinant laboratory S.

View Article and Find Full Text PDF

Recent research has revealed the calcium signaling significance in the production of cellulases in . While vacuoles serve as the primary calcium storage within cells, the function of vacuolar calcium transporter proteins in this process remains unclear. In this study, we conducted a functional characterization of four vacuolar calcium transport proteins in .

View Article and Find Full Text PDF

Genomic characteristics and genetic manipulation of the marine yeast Scheffersomyces spartinae.

Appl Microbiol Biotechnol

December 2024

National Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 310027, China.

The halotolerant yeast Scheffersomyces spartinae, commonly found in marine environments, holds significant potential for various industrial applications. Despite this, its genetic characteristics have been relatively underexplored. In this study, we isolated a strain of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!