Interaction mode of calcium-binding peptides and Caco-2 cell membrane.

Food Res Int

Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China. Electronic address:

Published: December 2017

In our previous studies, soluble soybean protein hydrolysate (SPH)-calcium complexes were shown to promote the calcium uptake of Caco-2 cells. However, the calcium transport mode involved remains unknown. In this article, several experiments were carried out via cytological analysis to investigate the calcium transport mode of peptides with low calcium binding capacities (F1), peptides with high calcium-binding capacities (F2), and their separate calcium complexes (F1-Ca and F2-Ca) when interacting with cell membranes. The interaction between one of them and a cell membrane is the first step in intracellular transport, as indicated by fluorescence blue shift experiments and acrylamide quenching experiments. The results of zeta potential experiments showed that only the "charge neutralization" phenomenon occurs when the F1 peptide or F1-Ca complex interacts with cell membranes and thus cannot be transported into cells. On the contrary, in an F2 at high concentrations or F2-Ca complex, a "charge recovery" phenomenon occurs apart from "charge neutralization" and can thus be transported into cells through endocytosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2017.09.077DOI Listing

Publication Analysis

Top Keywords

cell membrane
8
calcium transport
8
transport mode
8
cell membranes
8
"charge neutralization"
8
phenomenon occurs
8
transported cells
8
calcium
5
interaction mode
4
mode calcium-binding
4

Similar Publications

The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.

View Article and Find Full Text PDF

Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!