Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study focused on the use of a new system, an alginate|Ɛ-poly-l-lysine|alginate|chitosan microcapsule (APACM), able to immobilize a folate-producing probiotic, Lactococcus lactis ssp. cremoris (LLC), which provides a new approach to the utilization of capsules and probiotics for in situ production of vitamins. LLC is able to produce 95.25±26μg·L of folate, during 10h, and was encapsulated in the APACM. APACM proved its capacity to protect LLC against the harsh conditions of a simulated digestion maintaining a viable concentration of 6logCFU·mLof LLC. A nutrients exchange capacity test, was performed using Lactobacillus plantarum UM7, a high lactic acid producer was used here to avoid false negative results. The production and release of 2g·L of lactic acid was achieved through encapsulation of L. plantarum, after 20h. The adhesion of APACM to epithelial cells was also quantified, yielding 38% and 33% of capsules adhered to HT-29 cells and Caco-2 cells, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2016.10.036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!