EG95 oncospheral antigen plays a crucial role in Echinococcus granulosus pathogenicity. Considering the diversity of antigen among different EG95 isolates, it seems to be an ideal antigen for designing a universal multivalent minigene vaccine, so-called multi-epitope vaccine. This is the first in silico study to design a construct for the development of global EG95-based hydatid vaccine against E. granulosus in intermediate hosts. After antigen sequence selection, the three-dimensional structure of EG95 was modeled and multilaterally validated. The preliminary parameters for B-cell epitope prediction were implemented such as the possible transmembrane helix, signal peptide, post-translational modifications and allergenicity. The high ranked linear and conformational B-cell epitopes derived from several online web-servers (e.g., ElliPro, BepiPred v1.0, BcePred, ABCpred, SVMTrip, IEDB algorithms, SEPPA v2.0 and Discotope v2.0) were utilized for multiple sequence alignment and then for engineering the vaccine construct. T-helper based epitopes were predicted by molecular docking between the high frequent ovar class II allele (Ovar-DRB1*1202) and hexadecamer fragments of the EG95 protein. Having used the immune-informatics tools, we formulated the first EG95-based minigene vaccine based on T-helper epitope with high-binding affinity to the ovar MHC allele. This designed construct was analyzed for different physicochemical properties. It was also codon-optimized for high-level expression in Escherichia coli k12. Taken all, we propose the present in silico vaccine constructs as a promising platform for the generation of broadly protective vaccines for species and genus-specific immunization of the natural hosts of the parasite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiolchem.2017.11.008 | DOI Listing |
Genes Immun
August 2023
Department of Biochemistry, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, TongjiaXiang 24, Nanjing, 210009, China.
Int Immunopharmacol
November 2022
National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China. Electronic address:
Fibroblast activation protein (FAPα) is a tumor stromal antigen expressed by cancer-associated fibroblasts (CAFs) in more than 90 % of malignant epithelial carcinomas. FAPα-based immunotherapy has been reported and showed that FAPα-specific immune response can remold immune microenvironment and contribute to tumor regression. Many FAPα-based vaccines have been investigated in preclinical trials, which can elicit strong and durable cytolytic T lymphocytes (CTL) with good safety.
View Article and Find Full Text PDFBiomedicines
December 2021
Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany.
Although dengue virus (DENV) affects almost half of the world's population there are neither preventive treatments nor any long-lasting and protective vaccines available at this time. The complexity of the protective immune response to DENV is still not fully understood. The most advanced vaccine candidates focus specifically on humoral immune responses and the production of virus-neutralizing antibodies.
View Article and Find Full Text PDFClin Cancer Res
November 2021
Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.
Purpose: In this article, we describe a combination chimeric antigen receptor (CAR) T-cell therapy that eradicated the majority of tumors in two immunocompetent murine pancreatic cancer models and a human pancreatic cancer xenograft model.
Experimental Design: We used a dual-specific murine CAR T cell that expresses a CAR against the Her2 tumor antigen, and a T-cell receptor (TCR) specific for gp100. As gp100 is also known as pMEL, the dual-specific CAR T cells are thus denoted as CARaMEL cells.
Front Oncol
April 2021
Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, China.
Objective: To develop a neoantigen-targeted personalized cancer treatment for non-small cell lung cancer (NSCLC), neoantigens were obtained from collected human lung cancer samples, and the utility of neoantigen and neoantigen-reactive T cells (NRTs) was assessed.
Methods: Tumor specimens from three patients with NSCLC were obtained and analyzed by whole-exome sequencing, and neoantigens were predicted accordingly. Dendritic cells and T lymphocytes were isolated, NRTs were elicited and IFN-γ ELISPOT tests were conducted.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!