Wind noise spectra caused by wind from fans in indoor environments have been found to be different from those measured in outdoor atmospheric conditions. Although many models have been developed to predict outdoor wind noise spectra under the assumption of large Reynolds number [Zhao, Cheng, Qiu, Burnett, and Liu (2016). J. Acoust. Soc. Am. 140, 4178-4182, and the references therein], they cannot be applied directly to the indoor situations because the Reynolds number of wind from fans in indoor environments is usually much smaller than that experienced in atmospheric turbulence. This paper proposes a pressure structure function model that combines the energy-containing and dissipation ranges so that the pressure spectrum for small Reynolds number turbulent flows can be calculated. The proposed pressure structure function model is validated with the experimental results in the literature, and then the obtained pressure spectrum is verified with the numerical simulation and experiment results. It is demonstrated that the pressure spectrum obtained from the proposed pressure structure function model can be utilized to estimate wind noise spectra caused by turbulent flows with small Reynolds numbers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.5012740 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
The Cyprus Institute, Climate and Atmosphere Research Center, 2121, Nicosia, Cyprus.
The production of nitrogen oxides (NO = NO + NO ) is substantial in urban areas and from fossil fuel-fired power plants, causing both local and regional pollution, with severe consequences for human health. To estimate their emissions and implement air quality policies, authorities often rely on reported emission inventories. The island of Cyprus is de facto divided into two different political entities, and as a result, such emissions inventories are not systematically available for the whole island.
View Article and Find Full Text PDFSci Rep
December 2024
Center for Research on Microgrids (UPC CROM), Department of Electronic Engineering, Technical University of Catalonia, 08019, Barcelona, Spain.
With rising demand for electricity, integrating renewable energy sources into power networks has become a key challenge. The fast incorporation of clean energy sources, particularly solar and wind power, into the existing power grid in the last several years has raised a major problem in controlling and managing the power grid due to the intermittent nature of these sources. Therefore, in order to ensure the safe RES integration providing high-quality power at a fair price and for the secure and reliable functioning of electrical systems, a precise one-day-ahead solar irradiation and wind speed forecast is essential for a stable and safe hybrid energy system.
View Article and Find Full Text PDFSci Total Environ
December 2024
Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Institute for Sustainability, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom; Zero Carbon Guildford (ZERO), Guildford GU1 4EH, Surrey, United Kingdom. Electronic address:
Green infrastructure (GI) is known to reduce road air pollution exposure, but their implementation in schools and associated benefits remain under-researched. In this study, two GI solutions, green screen and green gate, were co-designed and installed at a primary school in Guildford using collaborative and participatory methods. By assessing changes in air pollution levels, noise, and public perception before and after GI installation, we aimed to understand their impact on reducing children's exposure and evaluate other co-benefits.
View Article and Find Full Text PDFISA Trans
December 2024
Department of Automation, Key Laboratory of System Control and Information Processing of Ministry of Education, Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education, Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
This paper presents the design of a disturbance rejection-based control strategy for a quadrotor unmanned aerial vehicle subject to model uncertainties and external disturbances described by turbulent wind gusts of severe intensity. First, an extended state observer is introduced to supply full-state and total disturbance estimations within a fixed time regardless of initial estimation errors. Then, an adaptive non-singular fast terminal sliding mode controller with a single-gain structure is proposed to reduce the tuning complexity and drive the pose of the rotorcraft while providing practical finite-time convergence, robustness to bounded external disturbances, non-overestimation of its control gain, and chattering attenuation.
View Article and Find Full Text PDFSensors (Basel)
November 2024
School of Automatic & Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
The strong wind environment causes the additional conductor of the overhead contact system (OCS) of the Lanzhou-Xinjiang high-speed railway to gallop, significantly impacting the safe operation of the train. This paper presents the design of an online monitoring system for the galloping of additional conductors in the OCS, utilizing video monitoring for accurate and real-time assessment. Initially, the dynamics of the OCS additional conductor and its operational environment are examined, leading to the selection of suitable data transmission and power supply methods to finalize the camera configuration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!