Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Broadband, high resolution X-pinch radiography has been demonstrated as a method to view the instability induced small scale structure that develops in near solid density regions of both insulated and non-insulated cylindrical metallic liners. In experiments carried out on a 1-1.2 MA 100-200 ns rise time pulsed power generator, μm scale features were imaged in initially 16 μm thick Al foil cylindrical liners. Better resolution and contrast were obtained using an X-ray sensitive film than with image plate detectors because of the properties of the X-pinch X-ray source. We also discuss configuration variations that were made to the simple cylindrical liner geometry that appeared to maintain validity of the small-scale structure measurements while improving measurement quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4989985 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!