Models of spin-orbit-coupled oligomers.

Chaos

Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 69978, Israel and ITMO University, St. Petersburg 197101, Russia.

Published: November 2017

We address the stability and dynamics of eigenmodes in linearly shaped strings (dimers, trimers, tetramers, and pentamers) built of droplets in a binary Bose-Einstein condensate (BEC). The binary BEC is composed of atoms in two pseudo-spin states with attractive interactions, dressed by properly arranged laser fields, which induce the (pseudo-) spin-orbit (SO) coupling. We demonstrate that the SO-coupling terms help to create eigenmodes of particular types in the strings. Dimer, trimer, and pentamer eigenmodes of the linear system, which correspond to the zero eigenvalue (EV, alias chemical potential) extend into the nonlinear ones, keeping an exact analytical form, while tetramers do not admit such a continuation, because the respective spectrum does not contain a zero EV. Stability areas of these modes shrink with the increasing nonlinearity. Besides these modes, other types of nonlinear states, which are produced by the continuation of their linear counterparts corresponding to some nonzero EVs, are found in a numerical form (including ones for the tetramer system). They are stable in nearly entire existence regions in trimer and pentamer systems, but only in a very small area for the tetramers. Similar results are also obtained, but not displayed in detail, for hexa- and septamers.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5000345DOI Listing

Publication Analysis

Top Keywords

trimer pentamer
8
models spin-orbit-coupled
4
spin-orbit-coupled oligomers
4
oligomers address
4
address stability
4
stability dynamics
4
dynamics eigenmodes
4
eigenmodes linearly
4
linearly shaped
4
shaped strings
4

Similar Publications

Self-assembling peptide nanoparticles (SAPN) based delivery systems, including virus-like particles (VLP), have shown great potential for becoming prominent in next-generation vaccine and drug development. The VLP can mimic properties of natural viral capsid in terms of size (20-200 nm), geometry (i.e.

View Article and Find Full Text PDF

Molecular principles of the assembly and construction of a carboxysome shell.

Sci Adv

November 2024

MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.

Article Synopsis
  • * The carboxysome shell contains various protein structures that help concentrate carbon dioxide around the enzyme Rubisco, which is crucial for the carboxylation process.
  • * Recent research using cryo-electron microscopy has revealed insights into how these shell proteins assemble, highlighting the importance of the scaffolding protein CsoS2 in forming larger shell structures.
View Article and Find Full Text PDF

Alginate oligosaccharides (AOs), derived from alginate degradation, exhibit diverse biological activities and hold significant promise in various fields. The enzymatic preparation of AOs relies on alginate lyases, which offers distinct advantages. In contrast to the conventional use of sodium alginate derived from brown algae as the substrate for the enzymatic preparation of AOs, AO preparation directly from brown algae is more appealing due to its time and energy efficiency.

View Article and Find Full Text PDF

Modular self-assembling nanoparticle vaccines, represent a cutting-edge approach in immunology with the potential to revolutionize vaccine design and efficacy. Although many innovative efficient modular self-assembling nanoparticles have been designed for vaccination, the immune activation characteristics underlying such strong protection remain poorly understood, limiting the further expansion of such nanocarrier. Here, we prepared a novel modular nanovaccine, which self-assembled via a pentamer cholera toxin B subunit (CTB) domain and an unnatural trimer domain, presenting S.

View Article and Find Full Text PDF

Oligomerization of protein arginine methyltransferase 1 and its functional impact on substrate arginine methylation.

J Biol Chem

November 2024

Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States. Electronic address:

Article Synopsis
  • Protein arginine methyltransferases (PRMTs) are crucial enzymes in eukaryotic cells that modify proteins and influence various biological processes like gene transcription and metabolism.
  • This study uncovered multiple higher-order structures of PRMT1, such as tetramers and octamers, using cryo-electron microscopy and linked these structures to enhanced enzyme activity.
  • Oligomerization was shown to increase PRMT1's efficiency in methylation and suggested that even a non-active mutant of PRMT1 could boost the function of the wild-type enzyme, indicating a new regulatory mechanism in enzyme activity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!