AI Article Synopsis

  • - A series of siRNA duplexes featuring cationic non-bridging 3',5'-linked phosphoramidate (PN) linkages were created to analyze their thermal stability and effectiveness in regulating firefly luciferase expression.
  • - The findings indicate that PN modifications do not significantly destabilize the siRNA duplex, and the stability can be improved with specific RNA-like modifications.
  • - Overall, the study suggests that these PN modifications could enhance the development of therapeutic siRNAs with better biological performance without compromising their potency or structure.

Article Abstract

A series of siRNA duplexes containing cationic non-bridging 3',5'-linked phosphoramidate (PN) linkages was designed and synthesized using a combination of phosphoramidite and H-phosphonate chemistries. Modified oligonucleotides were assayed for their thermal stability, helical structure, and ability to modulate the expression of firefly luciferase. We demonstrate that PN modifications of siRNAs are, in general, minimally destabilizing with respect to duplex thermal stability; destabilization can be mitigated through the incorporation of 2'-modified RNA-like residues or PN conjugates containing ionizable pendant moieties. We also demonstrate that single cationic dimethylethylenediamine PN linkages have little effect on siRNA potency, whether located in the passenger or guide strand of the duplex. Highly modified siRNA passenger strands were further modified with up to four cationic PN linkages, with little effect on duplex potency or helical structure. We envision that PN modifications could be useful in the production of therapeutic siRNAs with optimal biological properties.

Download full-text PDF

Source
http://dx.doi.org/10.1089/nat.2017.0702DOI Listing

Publication Analysis

Top Keywords

phosphoramidate linkages
8
thermal stability
8
helical structure
8
structural studies
4
studies gene
4
gene silencing
4
silencing activity
4
activity sirnas
4
cationic
4
sirnas cationic
4

Similar Publications

AMPylation is a post-translational modification (PTM) whereby adenosine monophosphate (AMP) from adenosine triphosphate (ATP) is transferred onto protein hydroxyl groups of serine, threonine, or tyrosine. Recently, an actin-dependent AMPylase namely LnaB from the bacterial pathogen Legionella pneumophila was found to AMPylate phosphate groups of phosphoribosylated ubiquitin and Src family kinases. LnaB represents an evolutionarily distinct family of AMPylases with conserved active site Ser-His-Glu residues.

View Article and Find Full Text PDF

Nucleic acid conjugation methodologies involve linking the nucleic acid sequence to other (bio)molecules covalently. This typically allows for nucleic acid property enhancement whether it be for therapeutic purposes, biosensing, etc. Here, we report a streamlined, aqueous compatible, on-column conjugation methodology using nucleic acids containing a site-specific amino-modifier.

View Article and Find Full Text PDF

Structural characterization and immune-enhancing effects of a novel polysaccharide extracted from Sargassum fusiforme.

Int J Biol Macromol

June 2024

Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, China. Electronic address:

To alleviate the adverse effects of chemotherapy and bolster immune function, a novel polysaccharide derived from Sargassum fusiforme named as SFP-αII. The structural composition of SFP-αII predominantly consisted of guluronic and mannuronic acids in a molar ratio of 33.8:66.

View Article and Find Full Text PDF

Purpose: The current candidate gene association study aims to investigate tag SNPs from the TACR1 gene as pharmacogenetic predictors of response to the antiemetic guidelines-recommended, NK-1 receptor antagonist-based, triple antiemetic regimens.

Methods: A set of eighteen tag SNPs of TACR1 were genotyped in breast cancer patients receiving anthracycline and cyclophosphamide (with/without docetaxel) applying real-time PCR-HRMA. Data analysis for 121 ultimately enrolled patients was initiated by defining haplotype blocks using PHASE v.

View Article and Find Full Text PDF

Synthesis of 6-deoxy-d-ido-heptopyranose-containing fragments of the Campylobacter jejuni strain CG8486 capsular polysaccharide.

Carbohydr Res

February 2024

Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada; Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128, Nangang, Taipei, 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Section 4, #1, Roosevelt Road, Taipei, 10617, Taiwan. Electronic address:

Campylobacters are important causes of gastrointestinal illness and the capsular polysaccharides (CPS) they produce are key virulence factors and targets for vaccine development. We report here the synthesis of two fragments of the Campylobacter jejuni CG8486 strain CPS that contain a rare 6-deoxy-d-ido-heptopyranose residue and, in one target, two O-methyl phosphoramidate (MeOPN) motifs. The synthetic approach features the stereoselective construction of the β-d-ido-heptopyranoside linkage via glycosylation with a β-d-galacto-heptopyranoside donor followed by a one-pot sequential C-2 and C-3 inversion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: