The binding and electrochemical properties of the complexes Cu -HAH, Cu -HWH, Cu -Ac-HWH, Cu -HHW, and Cu -WHH have been studied by using NMR and UV/Vis spectroscopies, CV, and density functional calculations. The results obtained highlight the importance of the peptidic sequence on the coordination properties and, consequently, on the redox properties of their Cu complexes. For Cu -HAH and Cu -HWH, no cathodic processes are observed up to -1.2 V; that is, the complexes exhibit very high stability towards copper reduction. This behaviour is associated with the formation of very stable square-planar (5,5,6)-membered chelate rings (ATCUN motif), which enclose two deprotonated amides. In contrast, for non-ATCUN Cu -Ac-HWH, Cu -HHW complexes, simulations seem to indicate that only one deprotonated amide is enclosed in the coordination sphere. In these cases, the main electrochemical feature is a reductive irreversible one electron-transfer process from Cu to Cu , accompanied with structural changes of the metal coordination sphere and reprotonation of the amide. Finally, for Cu -WHH, two major species have been detected: one at low pH (<5), with no deprotonated amides, and another one at high pH (>10) with an ATCUN motif, both species coexisting at intermediate pH. The present study shows that the use of CV, using glassy carbon as a working electrode, is an ideal and rapid tool for the determination of the redox properties of Cu metallopeptides.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201704623DOI Listing

Publication Analysis

Top Keywords

properties complexes
8
complexes -hah
8
-hah -hwh
8
-ac-hwh -hhw
8
redox properties
8
atcun motif
8
coordination sphere
8
properties
5
complexes
5
drastic peptide
4

Similar Publications

New insight into enhanced permanganate oxidation by lignocellulose-derived biochar: The overlooked role of persistent free radicals.

Water Res

December 2024

The Ministry of Education Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China. Electronic address:

Permanganate (Mn(VII)) is a traditional reagent used for water purification, but it is mild to deal with refractory organic contaminants of emerging concern. There is great interest in combination with effective and low-cost biochar to improve reaction kinetics of Mn(VII). Until recently, it still unclear how biomass composition and carbon structure of biochar influence the Mn(VII) oxidation performance.

View Article and Find Full Text PDF

Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects.

View Article and Find Full Text PDF

This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF, ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF-EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility.

View Article and Find Full Text PDF

Tailoring rhodium-based metal-organic layers for parahydrogen-induced polarization: achieving 20% polarization of H in liquid phase.

Natl Sci Rev

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Electronic Science and Engineering, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Heterogeneous catalysts for parahydrogen-induced polarization (HET-PHIP) would be useful for producing highly sensitive contrasting agents for magnetic resonance imaging (MRI) in the liquid phase, as they can be removed by simple filtration. Although homogeneous hydrogenation catalysts are highly efficient for PHIP, their sensitivity decreases when anchored on porous supports due to slow substrate diffusion to the active sites and rapid depolarization within the channels. To address this challenge, we explored 2D metal-organic layers (MOLs) as supports for active Rh complexes with diverse phosphine ligands and tunable hydrogenation activities, taking advantage of the accessible active sites and chemical adaptability of the MOLs.

View Article and Find Full Text PDF

Introduction: Clinicians are the conduits of high-quality care delivery. Clinicians have driven advancements in pharmacotherapeutics, devices, and related interventions and improved morbidity and mortality in patients with congestive heart failure over the past decade. Yet, the management of congestive heart failure has become extraordinarily complex and has fueled recommendations from the American Heart Association and the American College of Cardiology to optimize the composition of the care team to reduce the health, economic, and the health system burden of high lengths of stay and hospital charges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!