The growing use of extremely high-frequency electromagnetic radiation (EHF EMR) in information and communication technology and in biomedical applications has raised concerns regarding the potential biological impact of millimeter waves (MMWs). Here, we elucidated the effects of MMW radiation on neutrophil activation induced by opsonized zymosan or E. coli in whole blood ex vivo. After agonist addition to blood, two samples were prepared. A control sample was incubated at ambient conditions without any treatment, and a test sample was exposed to EHF EMR (32.9-39.6 GHz, 100 W/m ). We used methods that allowed us to assess the functional status of neutrophils immediately after exposure: oxidant production levels were measured by luminol-dependent chemiluminescence, and morphofunctional changes to neutrophils were observed in blood smears. Results revealed that the response of neutrophils to both agonists was intensified if blood was exposed to MMW radiation for 15 min. Neutrophils were intact in both the control and irradiated samples if no agonist was added to blood before incubation. Similarly, exposing suspensions of isolated neutrophils in plasma to MMW radiation enhanced cell response to both zymosan and E. coli. Heating blood samples was shown to be the primary mechanism underlying enhanced EHF EMR-induced oxidant production by neutrophils in response to particulate agonists. Bioelectromagnetics. 39:144-155, 2018. © 2017 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bem.22103 | DOI Listing |
Bioelectromagnetics
December 2024
6G Research and Innovation Lab, Swinburne University of Technology, Melbourne, Victoria, Australia.
As millimeter wave (MMW) technology, particularly in fifth-generation (5G) devices, gains prominence, there is a crucial need for comprehensive electromagnetic (EM) models of ocular tissues to understand and characterize EM exposure conditions accurately. This study employs numerical modeling to investigate the interaction between MMW and the cornea, aiming to characterize EM field distributions and absorption within an anatomically accurate eye model while considering the influence of eyelashes. Using the finite-difference time-domain (FDTD) method, we conduct simulations of EM radiation interactions from 20.
View Article and Find Full Text PDFPhysiol Meas
September 2024
Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, United States of America.
Peripheral Artery Disease (PAD) is a progressive cardiovascular condition affecting 8-10 million adults in the United States. PAD elevates the risk of cardiovascular events, but up to 50% of people with PAD are asymptomatic and undiagnosed. In this study, we tested the ability of a device, REFLO (Rapid Electromagnetic FLOw), to identify low blood flow using electromagnetic radiation and dynamic thermography toward a non-invasive PAD diagnostic.
View Article and Find Full Text PDFInt J Mol Sci
August 2024
School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
This comprehensive review critically examines the current state of research on the biological effects of millimeter-wave (MMW) therapy and its potential implications for disease treatment. By investigating both the thermal and non-thermal impacts of MMWs, we elucidate cellular-level alterations, including changes in ion channels and signaling pathways. Our analysis encompasses MMW's therapeutic prospects in oncology, such as inducing apoptosis, managing pain, and modulating immunity through cytokine regulation and immune cell activation.
View Article and Find Full Text PDFMicromachines (Basel)
May 2024
School of Instrument and Electronics, North University of China, Taiyuan 030051, China.
This paper presents the design of a 60 GHz millimeter-wave (MMW) slot array horn antenna based on the substrate-integrated waveguide (SIW) structure. The novelty of this device resides in the achievement of a broad impedance bandwidth and high gain performance by meticulously engineering the radiation band structure and slot array. The antenna demonstrates an impressive impedance bandwidth of 14.
View Article and Find Full Text PDFUltrason Sonochem
June 2024
Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China. Electronic address:
Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) leaf has abundant rhamnogalacturonan-I enriched pectic polysaccharides, which exert various health-promoting effects. Nevertheless, the potential relationship between the chemical structure and the biological function of pectic polysaccharides from Tartary buckwheat leaves (TBP) remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!