Reported here is a new analytical multiclass method based on QuEChERS technique, which has proven to be effective in diagnosing fatal poisoning cases in animals. This method has been developed for the determination of analytes in liver samples comprising rodenticides, carbamate and organophosphorus pesticides, coccidiostats and mycotoxins. The procedure entails addition of acetonitrile and sodium acetate to 2 g of homogenized liver sample. The mixture was shaken intensively and centrifuged for phase separation, which was followed by an organic phase transfer into a tube containing sorbents (PSA and C18) and magnesium sulfate, then it was centrifuged, the supernatant was filtered and analyzed by liquid chromatography tandem mass spectrometry. A validation of the procedure was performed. Repeatability variation coefficients <15% have been achieved for most of the analyzed substances. Analytical conditions allowed for a successful separation of variety of poisons with the typical screening detection limit at ≤10 μg/kg levels. The method was used to investigate more than 100 animals poisoning incidents and proved that is useful to be used in animal forensic toxicology cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jat/bkx093 | DOI Listing |
Anal Chem
January 2025
Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, Netherlands.
Thanks to the plummeting costs of continuously evolving omics analytical platforms, research centers collect multiomics data more routinely. They are, however, confronted with the lack of a versatile software solution to harmoniously analyze single-omics and interpret multiomics data. We have developed iSODA, a web-based application for the analysis of single- and multiomics data.
View Article and Find Full Text PDFBioanalysis
January 2025
Bioanalysis Discovery & Development Sciences, Johnson & Johnson, Spring House, PA, USA.
Background: Most oligonucleotide bioanalytical assays currently only quantify the pharmacologically-active antisense strand, though there have been recent efforts to simultaneously quantify the sense strand using hybridization ELISA or solid phase extraction LC-MS. Hybrid LC-MS, which offers both high sensitivity and specificity unlike the currently used platforms, has not been applied to quantify both siRNA strands simultaneously.
Materials & Methods: A hybrid LC-MS assay utilizing LNA capture probes was developed and applied to quantify both strands of a 21-mer lipid-conjugated siRNA (SIR-3) using tandem mass spectrometry (MS/MS).
Dev Psychopathol
January 2025
Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA.
Polygenic scores (PGSs) have garnered increasing attention in the clinical sciences due to their robust prediction signals for psychopathology, including externalizing (EXT) behaviors. However, studies leveraging PGSs have rarely accounted for the phenotypic and developmental heterogeneity in EXT outcomes. We used the National Longitudinal Study of Adolescent to Adult Health (analytic = 4,416), spanning ages 13 to 41, to examine associations between EXT PGSs and trajectories of antisocial behaviors (ASB) and substance use behaviors (SUB) identified via growth mixture modeling.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Chemistry, Cancer Center at Illinois and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801 Illinois United States.
Porphyrins, known as the "pigments of life", have evolved from their natural roles into versatile tools for biomedical applications. The development of activatable porphyrins has significantly expanded their utility, enabling precise responses to a carefully selected target analyte. These advances have broadened their use in imaging, diagnosis, and therapy.
View Article and Find Full Text PDFJACS Au
January 2025
Instituto de Química, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil.
Understanding the mechanism of drug action in biological systems is facilitated by the interactions between small molecules and target chiral biomolecules. In this context, focusing on the enantiomeric recognition of carbohydrates in solution through steady-state fluorescence emission spectroscopy is noteworthy. To this end, we have developed a third generation of chiral optical sensors for carbohydrates, distinct from all of those previously presented, which interact with carbohydrates to form non-covalent probe-analyte interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!