Strain engineering to reduce acetate accumulation during microaerobic growth conditions in Escherichia coli.

Biotechnol Prog

Early Stage Cell Culture, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080.

Published: March 2018

AI Article Synopsis

  • Microaerobic conditions can enhance industrial processes by channeling more carbon toward desired products, but they can also lead to high levels of acetate, which negatively affects biomass and product yields.
  • Research shows that genetic changes that reduce acetate in aerobic conditions often don't work in microaerobic settings, with the deletion of the arcA gene being the most effective strategy to reduce acetate levels under low oxygen.
  • Findings suggest that deleting arcA boosts the expression of genes involved in acetate assimilation and TCA cycle activities, offering valuable insights for developing strains that optimize biopharmaceutical production in oxygen-limited environments.

Article Abstract

Microaerobic (oxygen limited) conditions are advantageous for several industrial applications since a majority of the carbon atoms can be directed for synthesis of desired products. Oxygen limited conditions, however, can result in high levels of undesirable by-products such as acetate, which subsequently can have an impact on biomass and product yields. The molecular mechanisms involved in acetate accumulation under oxygen limited conditions are not well understood. Our results indicate that a majority of the genetic modifications known to decrease acetate under aerobic conditions results in similar or even higher acetate under oxygen limitation. Deletion of arcA, whose gene product is a global transcriptional regulator, was the only modification among those evaluated that significantly decreased acetate under both transient and prolonged oxygen limitation. Transcriptome results indicate that the arcA deletion results in an increased expression of the operon involving acs and actP (whose gene products are involved in acetate assimilation and uptake respectively) and some genes in the TCA cycle, thereby promoting increased acetate assimilation. These results provide useful cues for strain design for improved manufacturing of biopharmaceuticals under oxygen limited conditions. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:303-314, 2018.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.2592DOI Listing

Publication Analysis

Top Keywords

oxygen limited
16
limited conditions
16
acetate
8
acetate accumulation
8
involved acetate
8
oxygen limitation
8
acetate assimilation
8
conditions
6
oxygen
6
strain engineering
4

Similar Publications

Polymer electrolyte membrane water electrolyzers (PEMWEs) are a critical technology for efficient hydrogen production to decarbonize fuels and industrial feedstocks. To make hydrogen cost-effective, the overpotentials across the cell need to be decreased and platinum-group metal loading reduced. One overpotential that needs to be better understood is due to mass transport limitations from bubble formation within the porous transport layer (PTL) and anode catalyst layer (ACL), which can lead to a reduction in performance at typical operating current densities.

View Article and Find Full Text PDF

Steering acidic oxygen reduction selectivity of single-atom catalysts through the second sphere effect.

Nat Commun

December 2024

Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, China.

Natural enzymes feature distinctive second spheres near their active sites, leading to exquisite catalytic reactivity. However, incumbent synthetic strategies offer limited versatility in functionalizing the second spheres of heterogeneous catalysts. Here, we prepare an enzyme-mimetic single Co-N atom catalyst with an elaborately configured pendant amine group in the second sphere via 1,3-dipolar cycloaddition, which switches the oxygen reduction reaction selectivity from the 4e to the 2e pathway under acidic conditions.

View Article and Find Full Text PDF

Background: Dental treatment may not be possible for patients with a profound acquired brain injury without pharmacological support. Intravenous (IV) sedation with midazolam is a widely accepted, safe, and effective mode of treatment for people with a disability, but there is limited evidence in this patient cohort.

Aims: This evaluation aimed to review the IV sedation service for patients with profound acquired brain injury within the dental department at the Royal Hospital for Neuro-disability.

View Article and Find Full Text PDF

Prompt emergence from general anesthesia is crucial after neurosurgical procedures, such as craniotomies, to facilitate timely neurological evaluation for identification of intraoperative complications. Delayed emergence can be caused by residual anesthetics, metabolic imbalances, and intracranial pathology, for which an eye examination can provide early diagnostic clues. The sunset sign (or setting sun sign), characterized by a downward deviation of the eyes, can be an early indicator of raised intracranial pressure (ICP) or midbrain compression, as is commonly observed in states of hydrocephalus or periaqueductal or tectal plate dysfunction.

View Article and Find Full Text PDF

Background: The limited and detailed literature on total intravenous anesthesia (TIVA), as well as the clinical indications for unilateral ovariectomy in llamas, are not well-defined. Therefore, it is necessary to understand the anesthetic events and the surgical intervention in this species.

Aim: The objective of this study was to evaluate the intraoperative physiological and clinical parameters in llamas undergoing unilateral ovariectomy, under three protocols of TIVA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!