A novel hydroperoxoiron(III) species [Fe (OOH)(MeCN)(PyNMe )] (3) has been generated by reaction of its ferrous precursor [Fe (CF SO ) (PyNMe )] (1) with hydrogen peroxide at low temperatures. This species has been characterized by several spectroscopic techniques and cryospray mass spectrometry. Similar to most of the previously described low-spin hydroperoxoiron(III) compounds, 3 behaves as a sluggish oxidant and it is not kinetically competent for breaking weak C-H bonds. However, triflic acid addition to 3 causes its transformation into a much more reactive compound towards organic substrates that is capable of oxidizing unactivated C-H bonds with high stereospecificity. Stopped-flow kinetic analyses and theoretical studies provide a rationale for the observed chemistry, a triflic-acid-assisted heterolytic cleavage of the O-O bond to form a putative strongly oxidizing oxoiron(V) species. This mechanism is reminiscent to that observed in heme systems, where protonation of the hydroperoxo intermediate leads to the formation of the high-valent [(Porph )Fe (O)] (Compound I).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201704851 | DOI Listing |
JACS Au
December 2024
Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium.
Proton-coupled electron transfer (PCET) is a fundamental redox process and has clear advantages in selectively activating challenging C-H bonds in many biological processes. Intrigued by this activation process, we aimed to develop a facile PCET process in cancer cells by modulating proton tunneling. This approach should lead to the design of an alternative photodynamic therapy (PDT) that depletes the mitochondrial electron transport chain (ETC), the key redox regulator in cancer cells under hypoxia.
View Article and Find Full Text PDFJ Xenobiot
December 2024
Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa.
The direct discharge of cationic surfactants into environmental matrices has exponentially increased due to their wide application in many products. These compounds and their degraded products disrupt microbial dynamics, hinder plant survival, and affect human health. Therefore, there is an urgent need to develop electroanalytical assessment techniques for their identification, determination, and monitoring.
View Article and Find Full Text PDFInorg Chem
December 2024
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
Amide compounds are widely present in drug molecules and natural products, which can be synthesized by acid-amine condensation. It is urgent to design new photocatalysts for achieving both nitroaromatic reduction and C-H oxidation to obtain raw materials, carboxylic acids, and aromatic amines. Herein, a novel isopolymolybdate-incorporated photoactive metal-organic framework, -TPT, was constructed by combining the oxidation catalyst [MoO], Ni(II) cation, and photosensitive ligand 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China.
Proton-electron transfer (PET) processes play a pivotal role in numerous electrochemical reactions; yet, effectively harnessing them remains a formidable challenge. Consequently, unveiling the PET pathway is imperative to elucidate the factors influencing the efficiency and selectivity of small molecule electrochemical conversion. In this study, a Zn-NC model catalyst with N and C vacancies was synthesized using a hydriding method to investigate the universal impact of PET on CO electroreduction.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
The conversion of methane and carbon dioxide to form C products is of great interest but presents a long-standing grand challenge due to the significant obstacle of activating the inert C-H and C═O bonds as well as forming the C-C bonds. Herein, the consecutive C-C coupling of CH and CO was realized by using heteronuclear metal cations CuTa, and the desorption of HC═C═O molecules was evidenced by state-of-the-art mass spectrometry. The CuTa reaction system is significantly different from the homonuclear metal systems of Cu and Ta.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!